КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Нормированное (нормальное) уравнение прямой
Рассмотрим произвольную прямую L. Проведем через начало координат О прямую n^L, Р=LÇn – точка пересечения прямых. n –единичный вектор прямой n, и, следовательно, нормальный вектор прямой L, его направление совпадает с направлением отрезка ОР (если точки О и Р совпадают, то направление вектора n выбирают произвольно). Выразим уравнение прямой L через два параметра: длину р отрезка ОР и угол q между вектором n и осью Ох. Т.к. n – единичный вектор, то его координаты равны проекциям на оси координат: n ={cos q,sin q} (13) Точка М(х,у) лежит на прямой L тогда и только тогда, когда проекция вектора на ось, определяемую вектором n, равна р, т.е. при условии пр n =р (14) Т.к. , то ½ n ½пр n =пр n = n × (15) n ×=х cos q+уsin q (16) Т.о. точка М(х,у) лежит на прямой L тогда и только тогда, когда координаты этой точки удовлетворяют уравнению: х cos q+уsin q=р или х cos q+уsin q-р=0 (17)– нормированное (нормальное) уравнение прямой. Общее уравнение прямой Ах+Ву+С=0 можно преобразовать в нормальное. Если прямая задана общим уравнением Ах+Ву+С=0 и нормированным уравнением х cos q+уsin q-р=0, то найдется число t такое, что: tА=cosq, tB=sinq, tC=-p. Возведя в квадрат первые два равенства и сложив их, получим: t2(A2+B2)=1. Тогда t=. Т.к. всегда расстояние р³0, то из равенства tC=-p заключаем, что знак t противоположен знаку C. Т.о., для приведения общего уравнения прямой Ах+Ву+С=0 к нормированному виду, следует умножить его на нормирующий множитель t=, знак которого противоположен знаку С. Если С=0, то прямая проходит через начало координат (р=0). В этом случае знак нормирующего множителя можно выбирать любым. Пример. Написать нормированное уравнение прямой 3х-4у+10=0. Т.к. С=10>0. то нормирующий множитель равен . Нормированное уравнение имеет вид: -х+у-2=0. Здесь р=2, cos q=-, sin q=, q=. Отклонение точки от прямой. Даны прямая L:Ах+Ву+С=0 и точка М0(х0;у0), не лежащая на ней. Расстоянием от точки М0 до прямой L называется длина перпендикуляра М0М1, опущенного из этой точки на прямую: d=ρ(M0,L). Определение. Отклонением d точки М0(х0;у0) от прямой L называется число + d в случае, когда точка М0 и начало координат О лежат по разные стороны от прямой L, и число –d, когда точки М0 и О лежат по одну сторону от прямой L. Если начало координат О лежит на прямой L, то полагают отклонение равным +d в том случае, когда точка М0 по ту сторону от L, куда направлен нормальный вектор n, и равным -d в противном случае. Теорема. (с. 128) Пусть прямая L задана нормированным уравнением х cos q+уsin q-р=0 (17). Тогда отклонение точки М0(х0,у0) от прямой L, равно: d=х0 cos q+у0 sin q-р (18) Учитывая процедуру преобразования общего уравнения прямой в нормальное, получаем формулу для расстояния от точки М0(х0;у0) до прямой L, заданной своим общим уравнением: d= (19) Формула (19) позволяет найти и расстояние от точки до прямой. Пример. Найти длину высоты ВН ΔАВС, если В(1;2), а уравнение прямой, содержащей сторону АС: 6х-8у+5=0. Находим длину ВН как расстояние от точки В до прямой АС: =0,5.
Рассмотрим точку М2L, ее координаты удовлетворяют уравнению прямой, т.е. Ах2+Ву2+С=0 (*). Координаты вектора =(х0-х2;у0-у2). Вектор n= (A;B) - нормальный вектор прямой (в его качестве можно рассмотреть вектор , т.к. L). Тогда d= (т.к. из (*) С=- Ах2-Ву2)
Дата добавления: 2014-01-15; Просмотров: 1653; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |