КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
ПРИМЕР 1. Атом массой m с энергией e находится в объеме V, все точки и направления объема равноправны
Атом массой m с энергией e находится в объеме V, все точки и направления объема равноправны. Найти энергетическую плотность состояний. Получить температуру и давление, создаваемые фазовым ансамблем. Рассмотреть случай, когда в объеме находятся N атомов идеального газа. Гамильтониан атома , система изолирована, тогда ,
.
Фазовый ансамбль находится в импульсном пространстве на сфере радиусом .
Микросостояния фазового ансамбля отличаются направлениями вектора импульса. Число микросостояний, или фазовый объем внутри гиперповерхность : при ,
. (2.2а)
Учтена независимость импульса от координат при отсутствии внешнего поля. Для плотности состояний
(2.9а) получаем . (П.2.5)
Плотность состояний классической частицы пропорциональна корню квадратному из энергии и объему, доступному для частицы.
Из (2.14) находим . (П.2.6)
Температура пропорциональна энергии частицы.
При , . Из , (2.12)
, (2.2а)
, (П.2.5)
, (П.2.6)
получаем давление, создаваемой фазовым ансамблем, соответствующим одной частице: .
Получили уравнение идеального газа . Частный случай – азот N2
При , , получаем , .
На интервале энергии находятся уровней, следовательно, классический газ имеет квазинепрерывный спектр.
Для N частиц с полной энергией E радиус сферы в импульсном пространстве .
Для объема импульсного пространства в виде шара размерностью используем , (П.2.1) получаем ,
,
– температура пропорциональна средней э нергии частицы. Давление
удовлетворяет уравнению идеального газа .
Дата добавления: 2014-01-20; Просмотров: 443; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |