Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Ранг квадратичной формы




Квадратичная форма (определение). Матрица квадратичной формы.

Определение 1. Квадратичной формой L (x 1, x 2, …, x n) от n переменных называется сумма, каждый член которой является либо квадратом одной из переменных, либо произведением двух разных переменных x i× x j, взятых с некоторым действительным коэффициентом a ij, (причем a ij = a ji):

.

Определение 2. Матрицей квадратичной формы L (x 1, x 2, …, x n) от n переменных называется матрица, составленная из коэффициентов a ij:

.

Отметим, что в силу условия a ij = a ji, она является симметрической.

Ее диагональные элементы равны коэффициентам при квадратах переменных.

Определение 3. Матричной записью квадратичной формы L (x 1, x 2, …, x n) от n переменных называется запись L = X¢AX, где X =(x 1, x 2, …, x n)¢ - матрица столбец переменных.

Следовательно, .

Определение 2. Рангом квадратичной формы L (x 1, x 2, …, x n) от n переменных называется ранг матрицы квадратичной формы.




Поделиться с друзьями:


Дата добавления: 2014-11-06; Просмотров: 575; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.