КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Вопрос 5. Прохождение частицы сквозь потенциальный барьер
Способность квантовых частиц в силу своих волновых свойств заходить за барьер приводит к так называемому туннельному эффекту. Он заключается в следующем. Если частица с энергией Е налетает на некоторый потенциальный барьер Рассмотрим простейший потенциальный барьер прямоугольной формы (рис. 21.3) высоты U и ширины l для одномерного (по оси OX) движения частицы.
Рис. 21.3 Рис. 21.4
Для такого барьера U (x) = 0, (x < 0; обл. 1); U (x) = U, (0 < x < l; обл. 2); U (x) = 0, (x > l;обл. 3). При данных условиях задачи классическая частица, обладая энергией Е, либо беспрепятственно пройдет над барьером при E > U, либо отразится от него при E < U и будет двигаться в обратную сторону, т.е. она не может проникнуть через барьер. Для микрочастиц же, даже при E < U, имеется отличная от нуля вероятность, что частица отразится от барьера и будет двигаться в обратную сторону и также имеется отличная от нуля вероятность, что частица окажется в области x > l, т.е. проникнет сквозь барьер. Такой вывод следует непосредственно из решения уравнения Шредингера, описывающего движение микрочастицы при данных условиях задачи. Решением уравнения Шредингера для каждой из выделенных областей являются волновые функции Таким образом, квантовая механика приводит к принципиально новому квантовому явлению – туннельному эффекту, в результатекоторого микрообъект может пройти через барьер. Коэффициент прозрачности, т.е. вероятность прохождения частицы сквозь барьер прямоугольной формы, определяется выражением
где m –масса частицы; E – ее энергия; l – ширина барьера; U – его высота. Коэффициент прозрачности барьера произвольной формы (рис. 21.4) имеет вид:
Прохождение частицы сквозь барьер можно пояснить соотношением неопределенностей. Неопределенность импульса на отрезкеΔ x = l составляет Δ p > Туннельный эффект – специфически квантовое явление, не имеющее аналога в классической физике. Туннельное прохождение сквозь потенциальный барьер лежит в основе многих явлений физики твердого тела (например, явления в контактном слое на границе двух полупроводников, холодная эмиссия электронов из металла), атомной и ядерной физики (например, α - распад, протекание термоядерных реакций) и др. На использовании явления туннельного эффекта создан сканирующий туннельный микроскоп, позволяющий определять профили поверхности тончайших пленок. Разрешающая способность микроскопа по осям x, y достигает 10-10 м, а по оси z − порядка 10-12 м.
Дата добавления: 2014-11-06; Просмотров: 635; Нарушение авторских прав?; Мы поможем в написании вашей работы! |