Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Каноническое уравнение прямой. Параметрические уравнения прямой




Параметрические уравнения прямой.

Замечая, что , , , уравнение (9) можно записать в виде

.

Отсюда следуют равенства:

,

, (10)

.

Они называются параметрическими уравнениями прямой в пространстве.

Пусть — направляющий вектор прямой и — точка, лежащая на этой прямой. Вектор , соединяющий точку с произвольной точкой прямой , параллелен вектору . Поэтому координаты вектора и вектора пропорциональны:

. (11)

Уравнение (11) называются каноническим уравнением прямой в пространстве.

Замечания: 1) Уравнения (11) можно было бы получить сразу из параметрических уравнений прямой (10), исключив параметр . Из уравнений (10) находим

.

2) Обращение в нуль одного из знаменателей уравнений (11) озна­чает обращение в нуль соответствующей координаты направляющего вектора прямой.

Например, уравнения задают прямую, проходящую через точку перпендикулярно оси (проекция вектора на ось равна нулю). Но это означает, что прямая лежит в плоскости , и поэтому для всех точек прямой будет .





Дата добавления: 2014-11-06; Просмотров: 61; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:





studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ip: 54.198.221.13
Генерация страницы за: 0.005 сек.