КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Тема №6 2 страница
Произведение любого вектора на нуль и нуль-вектора на любое число, по определению, есть нуль-вектор, т.е. = , = .
Скалярным произведением двух ненулевых векторов и называется число, равное произведению длин этих векторов на косинус угла j между ними. Обозначение: или , т.е. где Если или , то, по определению,
Декартова прямоугольная система координат в пространстве называется правой (левой), если поворот от базисного вектора к вектору на наименьший угол виден с конца вектора осуществляющимся против (по) часовой стрелки. Говорят также, что тройка базисных векторов имеет правую (левую) ориентацию.
Векторным произведением двух неколлинеарных векторов и называется вектор , перпендикулярный плоскости векторов и , имеющий длину, равную площади параллелограмма, построенного на векторах и и направленный так, что тройка векторов так же ориентирована, как и тройка базисных векторов . Обозначение: . Векторное произведение двух коллинеарных векторов и в случае, когда один или оба сомножителя - нуль-векторы, по определению, равно нулю.
Смешанным произведением трех векторов называется скалярное произведение векторного произведения первых двух векторов на третий. Обозначение: , т.е. Из этого определения следует, что три вектора компланарны (параллельны одной плоскости) тогда и только тогда, когда их смешанное произведение равно нулю.
Любая прямая на плоскости может быть задана уравнением первого порядка Это уравнение называют общим уравнением прямой.
Каждый ненулевой вектор , компоненты которого удовлетворяют условию называется направляющим вектором прямой .
Направляющими косинусами прямой называются направляющие косинусы вектора , которые могут быть вычислены по формулам: ; . Откуда . Числа называются угловыми коэффициентами прямой.
Пусть - произвольное множество действительных чисел: . Говорят, что задана функция с областью определения D, если каждому числу из множества D поставлено в соответствие единственное действительное число . Обозначение: . Читается: « есть от . Число называется аргументом, число - значением функции при данном значении аргумента. Множество всех значений функции называется областью значений этой функции.
Графиком функции называется множество точек координатной плоскости, где «пробегает» всю область определения .
Число называется пределом функции при , если для любого существует такое число , что для всех таких, что верно неравенство .
Если при только при , то - называется пределом функции в точке слева, а если при только при , то называется пределом функции в точке справа.
Число называется пределом функции при , если для любого числа существует такое число , что для всех , таких что выполняется неравенство . При этом предполагается, что функция определена в окрестности бесконечности. Обозначение:
Функция называется ограниченной в некоторой окрестности точки , если существует такое число , что для всех точек из этой окрестности.
Предел функции при , где - число, равен бесконечности, если для любого числа существует такое число , что неравенство выполняется для всех , удовлетворяющих условию . Обозначение: . Если в приведенном определении заменить условие на , то получим а если заменить на , то
Функция называется бесконечно большой при , где – число или одна из величин ¥, +¥, -¥, если , где А –число или одна из величин ¥, +¥, -¥. Если , то функция называется бесконечно малой более высокого порядка, чем функция .
Если , то и называются бесконечно малыми одного порядка малости.
Если то функции и называются эквивалентными бесконечно малыми. Обозначение: .
Бесконечно малая функция называется бесконечно малой порядка k относительно бесконечно малой функции , если предел существует, конечен и отличен от нуля.
Функция , определенная в некоторой окрестности точки , называется непрерывной в точке , если предел функции и ее значение в этой точке равны . Тот же факт можно записать иначе: .
Если функция определена в некоторой окрестности точки , но не является непрерывной в самой точке , то она называется разрывной функцией в этой, а сама точка называется точкой разрыва этой функции.
Функция называется непрерывной в точке , если для любого положительного числа существует такое число , что для любых , удовлетворяющих условию , выполняется неравенство .
Функция называется непрерывной в точке , если приращение функции в точке является величиной бесконечно малой в этой точке где – функция бесконечно малая при . Если функция непрерывна в каждой точке множества , то говорят, что она непрерывна на множестве .
Точка называется точкой устранимого разрывафункции , если в этой точке функция имеет конечные, равные друг другу левый и правый пределы, не равные значению функции в точке : . При этом в самой точке функция может быть и не определена. Если доопрпеделить значение функции в точке положив его равным , то функция будет непрерывной в точке
Точка называется точкой разрыва 1- го рода функции , если в этой точке функция имеет конечные, но не равные друг другу левый и правый пределы .
Точка называется точкой разрыва 2 – го рода функции , если один из односторонних пределов функции в этой точке либо не существует либо равен бесконечности.
Функция называется непрерывной на интервале (отрезке), если она непрерывна в каждой точке интервала (отрезка).
Функция называется равномерно непрерывной на отрезке , если для любого существует такое, что для любых точек и таких, что выполняется неравенство .
Если каждому натуральному числу поставлено в соответствие по некоторому закону определённое число , то говорят, что на множестве всех натуральных чисел задана последовательность Общий член последовательности является функцией от . Таким образом, последовательность является функцией натурального аргумента.
Последовательность называется ограниченной, если существует такое число , что для любого справедливо неравенство , т.е. все члены последовательности принадлежат отрезку .
Последовательность называется ограниченной сверху, если для любого существует такое число , что .
Последовательность называется ограниченной снизу, если для любого n существует такое число , что .
Число называется пределом последовательности , если для любого положительного существует такой номер , что для всех выполняется неравенство Обозначение: . В этом случае говорят, что последовательность сходится к при .
1) Если для всех , то последовательность называется возрастающей. 2) Если для всех , то последовательность называется неубывающей. 3) Если для всех , то последовательность называется убывающей. 4) Если для всех , то последовательность называется невозрастающей. Все эти последовательности называются монотонными. Возрастающие и убывающие последовательности называются строго монотонными.
Производной функции в точке называется предел, если он существует, отношения приращения функции в точке к приращению аргумента в этой точке, когда последнее стремится к нулю , где - приращение аргумента в точке , а - соответствующее этому приращению приращение функции в этой точке.
Правой (левой) производной функции в точке называется правый (левый) предел , при условии, что этот предел существует. Если функция имеет производную в некоторой точке , то она имеет в этой точке односторонние производные. Однако, обратное утверждение неверно.
Дифференциалом функции в точке называется главная линейная часть приращения функции. Обозначается или . Из определения следует, что или , так как . Следовательно, .
Формулой Маклорена называется формула Тейлора при :
Пусть функция дифференцируема на некотором интервале. Дифференцируя, находим её первую производную . Если найти производную функции , получим вторую производную функции если последняя существует , т.е. или .Этот процесс можно продолжить и далее, находя производные степени .
Функция имеет в точке максимум, если ее значение в этой точке больше значений во всех точках некоторой окрестности, содержащей точку . Функция имеет в точке минимум, если при любом ( может быть и отрицательным).
Дата добавления: 2014-11-06; Просмотров: 289; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |