КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Фазовое состояние системы нефть-газ при различных давлениях и температурах
ВЛАГОСОДЕРЖАНИЕ ПРИРОДНЫХ ГАЗОВ И ГАЗОКОНДЕНСАТНЫХ СИСТЕМ, ВЛИЯНИЕ ВОДЫ НА ФАЗОВЫЕ ПРЕВРАЩЕНИЯ УГЛЕВОДОРОДОВ Природные газы и газоконденсатные смеси контактируют в пласте с остаточной водой коллекторов, а также краевыми и подстилающими водами. Вследствие этого газы в пласте содержат то или иное количество паров воды. Концентрация водяных паров в газе зависит от давления, температуры и состава газа. Как и в случае углеводородных компонентов, при определенном давлении и температуре в единице объема газа может содержаться определенное максимальное количество воды. Газ при этом будет насыщенным водяными парами. При повышении температуры этот газ при том же влагосодержании будет недонасыщен парами воды. Отношение количества водяных паров, находящихся в газе при данных условиях, к максимально возможному количеству водяных паров в газе при тех же условиях называют относительной влажностью газа. Эта величина характеризует степень насыщения газа водяным паром. Относительная влажность выражается в долях единицы или в процентах. Количество водяных паров, находящихся в единице объема или массы газа, называют абсолютной влажностью. Абсолютная влажность измеряется в г/м3 или в г/кг. На рис IV.12 приведена номограмма для определения влагосодержания природных газов (с относительной плотностью 0,6) в условиях насыщения в зависимости от давления и температуры. Как следует из этого рисунка, с повышением температуры влагосодержание газа возрастает. Повышение давления способствует снижению содержания воды в газе. Рис. IV.12. Номограмма для определения влагосодержания природных газов при различных давлениях и температурах Соли, растворенные в воде, понижают парциальное давление паров воды в газовой фазе, и поэтому влагосодержание газа, находящегося в равновесии с рассолом, уменьшается с ростом концентрации солей в воде. С увеличением молекулярной массы газа (с 16 до 30) влагосодержание его уменьшается в пределах температур и давлений, встречающихся на практике, незначительно (на 3—5%). Учет влияния солей, растворенных в воде, и различия плотностей газа проводятся по корректировочным графикам, описанным в специальной литературе. Пары воды, присутствующие в газах и газоконденсатных смесях, влияют на фазовые превращения углеводородных систем. В качестве примера можно привести данные А. И. Гриценко, исследовавшего влияние воды на фазовые превращения газоконденсатных смесей Челбасского и Майкопского месторождений. В пластовых условиях в газоконденсатной смеси Челбасского месторождения (рпл=22,8 МПа и tпл=96,1 °С) растворяется от 5,38 до 5,43 см3/м3 воды. Количество растворенной воды в газоконденсатной смеси Майкопского месторождения в пластовых условиях (рпл = 30,3 МПа и tпл=128°С) составляет 10,5 см3/м3. В процессе исследования А. И. Гриценко наблюдал, что при изотермическом (при пластовой температуре) снижении давления в газоконденсатной системе, содержащей водяные пары, одновременно выделяются конденсат и вода (двойная обратная конденсация). Было установлено, что давление однофазного состояния в присутствии воды увеличивается и равно для Челбасского месторождения 21,37 МПа (без воды — 20,7 МПа), а для Майкопского месторождения 29,1 МПа (без воды — 27,8 МПа). Это свойство газоконденсатных систем, содержащих пары воды, необходимо учитывать при разработке месторождений — давление начала конденсации углеводородов следует определять по пробам, содержание паров воды в которых приближается к пластовым значениям. Если используется только углеводородная часть системы газокон-денсатного месторождения, давления однофазного состояния получаются заниженными. Явления двойной обратной конденсации — выделение конденсата и воды из углеводородных систем, содержащих водяные пары, в условиях изотермического снижения давления наблюдал впервые Ван-дер-Ваальс. Это явление часто встречается в системах, в которых один из компонентов полярный. Причины повышения давления начала конденсации углеводородных систем в присутствии паров воды можно объяснить исходя из общей теории фазовых превращений. Смесь паров воды с углеводородами можно представить в виде бинарной системы, один из компонентов которой (углеводород) обладает высокой летучестью паров, а другой (вода)— тяжелый компонент с меньшей летучестью. Как было установлено в предыдущих разделах, с повышением концентрации тяжелого компонента (см. рис. IV.2, б) критическое давление системы всегда становится больше, чем критическое давление любого компонента, находящегося в смеси (кроме случая, когда один из компонентов преобладает настолько, что критические свойства смеси становятся близкими к свойствам индивидуального компонента). Рост критического давления и температуры сопровождается повышением давления начала конденсации в критической области.
Нефть большей части нефтяных месторождений существенно отличается от состава конденсатов газоконденсатных месторождений содержанием высокомолекулярных, соединений, парафина, смол, асфальтенов и других тяжелых компонентов. Последние оказывают существенное влияние, на процессы фазовых превращений нефтегазовых систем. Исследования фазового состояния и состава фаз системы нефть-газ Карадагского и Степновского нефтегазоконденсатных месторождений при температурах до 150 °С и давлениях до 70,0 МПа показали, что с повышением давления при постоянной температуре газовая фаза значительно обогащается компонентами нефти.. При этом плотность и молекулярная масса конденсатов возрастает, а температурные пределы их кипения увеличиваются. Однако даже при давлении 70 МПа и температуре 100 °С система оставалась двухфазной, далекой от критического состояния — в газовую фазу переходило лишь 60% жидких компонентов системы. (При t=100°C и р = 70 МПа в опытах с образцами конденсатного газа и нефти Карадага содержание конденсата в газе достигает 647 г на 1 м3 газа в нормальных условиях). С ростом температуры при постоянном давлении также происходит увеличение содержания конденсата в газовой фазе, но влияние температуры заметно слабее, чем влияние давления. Содержание его в газе при одних и тех же условиях уменьшается, если в исходном конденсатном газе меньше тяжелых фракций и если в исходном газе содержится азот. При одинаковых условиях опыта в газовой фазе в меньшем количестве растворяются более тяжелые нефти и нефти, содержащие ароматические углеводороды. С ростом температуры до 150 °С и давлении до 70 МПа фракционный состав конденсата приближается к составу нефти (в газовую фазу мало переходит смол и почти не содержится в газовом конденсате асфальтенов). Исследования также показывают, что различные газы обладают неодинаковыми свойствами как растворители нефти. Изучалась растворимость ряда нефтей в метане, углекислом газе, этилене, а также в смесях метана с его гомологами. Характеристика использованных нефтей приведена в табл. IV. 1. Таблица IV.1 Характеристика нефтей
Исследования проводились в интервале давлений 10— 80 МПа при температурах, превышающих критические температуры газов. Результаты опытов приведены на рис. IV. 13. Отношение объемов газа и нефти в различных опытах было неодинаковым. По результатам исследования, растворимость нефти и газа возрастает с увеличением давления независимо от соотношения объёмов газа и нефти. Рис. IV.13. Растворимость нефтей в сжатых газах. 1 — хадыженская нефть — смесь газов: СН4, С2Н4, С2Н6, С3Н8 (VГ/VH= 1415); 2 — хадыженская нефть — СО2 VГ/VH=1980); 3 — хадыженская нефть — метан (VГ/VH=1320); 4 — доссорская нефть — метан (VГ/VH=1785); 5 — хадыженская нефть — метан (VГ/VH=3580) Растворимость нефти зависит от состава и природы газа — растворяющая способность газов растет в последовательности метан—этан—этилен—пропан. Метан в смеси с этими газами повышает их растворяющую способность. Во всех опытах оказалось, что с увеличением отношения объемов газа VГ и нефти VH содержание конденсата в газовой фазе уменьшается. При этом с увеличением VГ/VН конденсат обогащается легкими фракциями и понижается его молекулярная масса. Исследования показывают, что критические параметры нефтегазовых смесей значительно выше, чем критическое давление и температура для рассмотренных ранее газоконденсатных систем. Рис. IV. 14. Кривые зависимости критических температур и давлений системы нефть — конденсат-ный газ от ее состава (Степновское месторождение). На рис. IV. 14 приведены кривые критических температур (а) и критических давлений (б) системы нефть — конденсатный газ в зависимости от ее состава (Степновское месторождение). Наибольшее значение критического давления наблюдается (как и в случае простых бинарных смесей) при близкой массовой концентрации обоих компонентов в системе и достигает для нефтей Степновского месторождения 100 МПа при t=200 °С. Однако при добавлении в метан его ближайших гомологов— этана, пропана и бутана критические давления в системе нефть — газ удавалось снижать до 15 МПа. Исследования показали также, что на критическое давление влияет порода пласта. Некоторое снижение этого параметра под влиянием породы можно объяснить адсорбцией асфальто-смолистых компонентов нефти на поверхности твердых частиц. Таким образом, порода способствует изменению состава жидкой фазы, как бы обогащая ее легкими фракциями, которые могут переходить в паровую фазу при меньших давлениях. Остаточная вода, по-видимому, способствует увеличению критического давления на 10—16%. Данные о фазовом состоянии нефтегазовых смесей при различных давлениях и температурах используются для разработки некоторых методов повышения нефтеотдачи пластов (например, путем нагнетания в пласт газов высокого давления, газов, обогащенных тяжелыми компонентами, и т. д.).
Дата добавления: 2014-11-07; Просмотров: 1574; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |