ДИФФЕРЕНИЦАЛЬНОЕ УРАВНЕНИЕ СВОБОДНОЙ МАТЕРИАЛЬНОЙ ТОЧКИ В ДЕКАРТОВЫХ КООРДИНАТАХ
Пусть xyz- инерционная система отсчета. На точку действует система сил ……и =- их равнодействующая
(1) Ускорение по направлению совпадает с результирующей силой .
Проектируя уравнение (1) на оси координат:
(2)
=
Уравнения (2) представляют собой дифференциальные уравнения движения свободной точки в координатной форме. Если движение точки ограничено связями, то уравнение (1) будет выглядеть
τ
τ
где N- равнодействующая динамических реакций связи.
–естественные оси свяжем с материальной точкой; они движутся вместе с точкой.
где b – бинормаль и
Учитывая, что касательную и нормальную составляющие ускорения можно
выразить как
; где S –дуговая координата, то:
(1)
(2)
Уравнения (1) и (2) называются дифференциальными уравнениями в форме Эйлера.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление