КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Примеры выполнения заданий. 1 Решить задачу симплекс-методом, т.е
Задания: 1 Решить задачу симплекс-методом, т.е. определить mах Z = 3х1 + 2х2. х1+3х2<=270, 4х1+6х2<=600, 3х1 + х2<=240, х1>= 0, х2 >= 0. Решение. Введение дополнительных неотрицательных переменных х1, х2, х3 приведем задачу к каноническому виду: max Z = 3х1 + 2х2 + 0х3 + 0х4+ 0х5; х1 +3х2 + х3 = 270, 4х1 + 6х2 + x4 =600, 3х1 + х2 + x5 = 240 х1>= 0, х2 >= 0, х3>= 0, x4>= 0, x5 >= 0. Дополнительные переменные х3, х4, х5 являются базисными, а х1,х2 - свободными. Дополнительные переменные по своему экономическому смыслу представляют предполагаемый избыточный объем ресурсов соответственно первого, второго и третьего видов. Занесем коэффициенты целевой функции и ограничений задачи в таблицу 32.
Таблица 32 — Допустимое базисное решение
Поскольку базисные переменные х3, х4, х5 входят в целевую функцию с коэффициентами 0, естественно, что начальное базисное решение х3 = 270, х4 = 600, х5 = 240 с нулевым значением целевой функции. Отрицательные значения Z1 = -3, Z2 = -2 свободных переменных в оценочной строке указывают, что данное базисное решение может быть улучшено. Выполняя шаг 2 алгоритма устанавливаем, что наименьшее отрицательное значение в оценочной строке равное 3, находится в первом столбце таблицы 32, который, становится ключевым. Для увеличения целевой функции надо ввести в базис свободную переменную х1, и вывести из базиса одну из базисных переменных х3, х4, х5. На шаге 3 находим отношение 270/1, 600/4, 250/3 элементов вектора b к положительным элементам ключевого столбца и по наименьшему из этих отношений выбираем ключевую строку и ключевой элемент а31, = 3, взятый в рамку. В соответствии с шагом 4 по формулам выполняем преобразование элементов таблицы, включая и оценочную строку Z. Этим заканчивается первая итерация симплекс-метода, в результате чего из базиса выведена переменная х5 и введена переменная х1.
Новое базисное решение х3 =190, х4 =280, х5= 80, связанное со значением целевой функции Z = 240, и преобразованные элементы приведены в таблице 33.
Таблица 33 — Новое базисное решение
В этой таблице имеется единственный отрицательный элемент Z 2 = -1 Выполняя вторую операцию с ключевым элементом а22= 14/3, получаем таблицу 34, в которой все коэффициенты оценочной строки неотрицательны.
Таблица 34 — Оптимальное решение
Оптимальное решение (х1, х2, х3) = (60, 60, 30), Z = 300 показывает, что при одинаковых объемах производства первого и второго изделий, равных 60 единиц будет получен доход в 300 денежных единиц. При этом первый ресурс имеется в избытке х3=30 единиц, а второй и третий используются полностью х4=х5 =0.
2 Решить задачу: max Z = 8х1 + 2х2 - 2х3 - 5х4 - 6х5; х1 +х2 - х3 - x4= 16, 4х1 - 2х2 + 2х3 - x5 =20, х1>= 0, х2 >= 0, х3>= 0, x4>= 0, x5 >= 0.
Решение. Система ограничений задачи не содержит базисных переменных, поэтому введем в уравнение искусственные переменные х6, х7, включив их в целевую функцию с коэффициентом - М, значение которого заранее не фиксируется. Получим следующую задачу: max Z = 8х1 + 2х2 - 2х3 - 5х4 - 6х5 – Мх6 – Мх7; х1 +х2 - х3 - x4 + х6 = 16, 4х1 - 2х2 + 2х3 - x5 + х7 =20, xj >0, j=1,…,7, решение которой приведено в таблице 35. Отметим, что после того, как искусственная переменная была выведена из базисных переменных, в силу выбора коэффициента - М она уже не может больше попасть в число базисных переменных, поэтому в последующих симплекс-таблицах столбец, соответствующий этой переменной, можно исключить.
Таблица 35 — Решение
Оптимальное решение задачи: х1 = 26/3, х2 =22/3, х3 =х4 =х5 = х6 = х7 = 0, Z = 84.
3 Решить задачу: min Z = х1 + 2х2. 2х1+х2>=3, 2х1-7х2<=1, 2х1 + 3х2>=6, х1>= 0, х2 >= 0.
Решение. Перейдем к эквивалентной задаче максимизации. Для этого поменяем знаки коэффициентов целевой функции умножим на -1 первое и третье неравенства и введем дополнительные переменные х3, х4, х5. В результате получаем задачу: max Z = -х1 - 2х2 + 0х3 + 0х4+ 0х5, -2х1 -х2 + х3 = -3, 2х1 - 7х2 + х4 =1, -2х1 -3х2 + х5 = -6, xj >=0, j=1,…,5. В исходной симплекс - таблице все элементы оценочной строки отрицательны. В Соответствии с шагами 1, 2 двойственного симплекс - метода выбираем ключевую строку, соответствующую наименьшему отрицательному элементу -6 в столбце свободных членов и, выполняя шаг 4, находим отношения коэффициентов оценочной строки к отрицательным элементам, ключевой строки, равные 1/(-2) и 2/(-3). Большее из этих чисел указывает ключевой элемент а31 = -2. Выполнив требуемые преобразования, на следующей итерации по тем же правилам находим ключевой элемент а22 = -10. После двух итераций двойственного симплекс - метода получаем оптимальный план: х = (9/4, 1/2, 2, 0, 0), Z max = -13/4 (таблица 36).
Таблица 36 — Решение
Это дает решение исходной задачи в виде х = (9/4, 1/2), Z= 13/4.
4 Решить задачу: max Z = 8х1 + 2х2 - 5х3, -х1 +2х2 + х3 >= 6, х1 - 2х2 + 2х3 > =3, 2х1 + х2 - х3 < =2, х1>= 0, х2 >= 0, х3>= 0. Решение. С помощью дополнительных переменных х4, х5, х6 >= 0 переходим от ограничений неравенств к ограничениям - равенствам, и после умножения первого и второго ограничений на -1 окончательно получаем: max Z = 8х1 + 2х2 - 5х3, х1 -2х2 - х3 + x4 = -6, -х1 + 2х2 - 2х3 + x5 =-3, 2х1 + х2 - х3 + x6 =2, xj >=0, j=1,…,6. Заполняем симплекс - таблицу и в соответствии с шагами 1и 2 двойственного алгоритма выбираем ключевую строку, соответствующую наименьшему отрицательному числу в столбце свободных членов. Сравниваем отношения (-6)/(-2) и (-6)/(-1) и поскольку второе из них большее, то ему соответствует ключевой столбец. Выполняя преобразования с ключевым элементом а13 = -1, получаем эквивалентную задачу с неотрицательными значениями bi. Проведя еще две итерации по правилам обычного симплекс - метода получаем оптимальный план: х = (7/5, 11/5, 3, 0, 0, 0), Z шах = 3/5 (таблица 37).
Таблица 37 — Решение
1 Решить симплекс-методом задачу 1 первого задания. 2 Решить симплекс-методом задачу 3 первого задания. 3 Решить симплекс-методом задачу 4 первого задания. 4 Решить симплекс-методом задачу 5 первого задания. 5 Решить симплекс-методом задачу б первого задания. 6 Решить симплекс-методом задачу 7 первого задания. 7 Решить симплекс-методом задачу 9 первого задания. 8 Решить симплекс-методом задачу 10 первого задания. 9 Решить симплекс-методом задачу 11 первого задания. 10 Решить симплекс-методом задачу 12 первого задания. 11 Решить симплекс-методом задачу 13 первого задания. 12 Решить симплекс-методом задачу 14 первого задания. 13 Решить симплекс-методом задачу 15 первого задания. 14 Решить симплекс-методом задачу 16 первого задания. 15 Решить симплекс-методом задачу 17 первого задания. 16 Решить симплекс-методом задачу 18 первого задания. 17 Решить симплекс-методом задачу 19 первого задания. 18 Решить симплекс-методом задачу 20 первого задания. 19 Решить симплекс-методом задачу 21 первого задания. 20 Решить симплекс-методом задачу 23 первого задания. 21 Решить симплекс-методом задачу 24 первого задания. 22 Решить симплекс-методом задачу 25 первого задания. 23 Решить симплекс-методом задачу 27 первого задания. 24 Решить симплекс-методом задачу 28 первого задания. 25 Решить симплекс-методом задачу 29 первого задания. 26 Решить симплекс-методом задачу 30 первого задания 27 Решить симплекс-методом задачу 31 первого задания 28 Решить симплекс-методом задачу 33 первого задания 29 Решить симплекс-методом задачу 34 первого задания 30 Решить симплекс-методом задачу 35 первого задания
Дата добавления: 2014-10-15; Просмотров: 636; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |