Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Статистическое оценивание




ВЫБОРОЧНЫЙ МЕТОД И СТАТИСТИЧЕСКОЕ ОЦЕНИВАНИЕ

7.1. Основные понятия и определения выборочного метода

Одно из популярных определений статистики говорит, что это наука, позволяющая распространять выводы, сделанные на основе изучения части совокупности (случайной выборки), на всю совокупность (генеральную совокупность). В этом определении заключена сущность выборочного метода и его ведущая роль в статистике.

Все единицы совокупности, обладающие интересующими исследователя признаками, составляют генеральную совокупность.

Часть совокупности, случайным образом отобранная из генеральной совокупности – выборочная совокупность – выборка.[2]

Число единиц (элементов) статистической совокупности называется её объёмом. Объем генеральной совокупности обозначается N, а объем выборочной совокупности n. Если объем совокупности велик, то его полагают равным бесконечности.

Случайная выборка из n элементов - это такой отбор, при котором элементы извлекаются по одному из всей генеральной совокупности и каждый из них имеет равный шанс быть отобранным. Требование случайности обеспечивается отбором по таблицам случайных чисел или по жребию. Такая выборка называется собственно-случайной. Одним из примеров использования собственно-случайной выборки является проведение тиражей выигрышей денежно-вещевых лотерей, при которых обеспечивается равная возможность попадания в тираж любого но­мера лотерейного билета.

По способу отбора элементов различают два типа случайных выборок: собственно-случайная повторная выборка (схема возвращенного шара); собст­венно-случайнаябесповторная выборка (схема невозвращенного шара).

Выбор схемы отбора зависит от характера изучаемого объ­екта. Напомним, что при повторном отборе единица наблюдения после извлечения из генеральной совокупности регистрируется и вновь возвращается в генеральную совокупность, откуда опять может быть извлечена случайным образом. При бесповторном отборе отобранный элемент в выборку обратно не возвращается. Необходимо заметить, что независимо от способа организации выборки она должна представлять собой уменьшенную копию генеральной совокупности, то есть быть представительной (репрезентативной).

 

Пусть из генеральной совокупности извлекается выборка объема n, причем значение признака х1 наблюдается m1 раз, х2 m2 раз,..., хk наблюдается mk раз, - объем выборки.

Мы можем сопоставить каждому значению xi относительную частоту mi/n.




Поделиться с друзьями:


Дата добавления: 2014-10-22; Просмотров: 660; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.