КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Зависимость между моментами инерции при повороте осей
Пусть задана система координат главных центральных осей x0,y0, для которой известны моменты инерции , центробежный момент инерции в этих осях равен нулю (рис.2.9). Вычислим моменты инерции этого сечения относительно новых осей x,y, повернутых по отношению к главным на угол α - угол между осямиx0 и x. Он будет положительным, если поворот от оси x0 к оси x происходит против часовой стрелки и отрицательным - если по часовой стрелке. Из рис. 2.9 следует: =, y = С учетом этих формул запишем выражения для моментов инерции рассматриваемого сечения в координатных осях x, y: Iх ==(у0 cоsα - х0 sinα)2dA =уcоs2 α dA – -2х 0у0cоsα· sinαdA+sin 2αdA, т.е. = cоs 2α - 2 Іх 0у0cоsα·sinα + sin 2α. Іу = =(х0csα + у0sinα)2dA =хcоs 2αdA ++2х 0 у0cоsα· sinαdA+уsinα dA=
= cоs 2α + 2 Іх 0у0cоsα · sinα +sin 2α. Іху= = = == = cos2α ·cоsα ·sinα +cоsα∙ sinα - sin2α. Так как , cоsα ∙sinα =, то окончательно получим . Складывая выражения Іх и Іу, получим . Таким образом, при повороте координатных осей сумма осевых моментов инерции не изменяется.
Дата добавления: 2014-10-23; Просмотров: 365; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |