КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Пример решения 2.2
Тип Тип I Cd I
Рис. 2.3 2.1.2. Разберем вопрос о пространственной структуре молекулы. Пространственная структура молекулы связана с типом гибридизации и расположением боковых атомов вокруг центрального атома (табл. 2.2).
Таблица 2.2
Как видно из табл. 2.2, при sp 3 гибридизации может реализоваться тетраэдрическая форма, пирамидальная или угловая в зависимости от числа боковых атомов (4, 3, 2 – соответственно). В данном типе гибридизации могут оставаться неиспользованные орбитали, которые влияют на величину валентного угла. Из рис. 2.3 следует, что рассматриваемая молекула CdI2 имеет линейную форму. 2.1.3. Теперь отметим наличие σ и π связей в молекуле. Если область перекрывания находится на оси связи, такая связь σ - типа (сигма тип), если область перекрывания расположена по обе стороны от оси связи – это π-тип (пи тип) (рис. 2.4).
а) б) в)
Рис. 2.4. Типы связей
Исходя из рисунка 2.3. делаем вывод, что в молекуле CdI2 две ковалентные связи σ-типа.
2.1.4. Определим полярность связи и молекулы в целом. Полярность связи обусловлена наличием диполя, образованного за счет оттягивания валентных электронов в сторону более электроотрицательного атома (Приложение 1). В связи Cd–I в молекуле CdI2 более электроотрицательным элементом является йод. Поэтому связь Cd–I является полярной. Для определения полярности молекулы необходимо учитывать: а) полярность связи; б) пространственную структуру молекулы. Молекула CdI2 неполярна, так как при наличии двух диполей оттягивание электронов идет в обе стороны одинаково, и дипольные моменты взаимно компенсируются. Рассмотрим молекулу OF2. Выписываем валентные электроны центрального атома – кислорода.
Далее надо перевести электроны в возбужденное состояние. Однако, на втором энергетическом уровне свободных орбиталей нет, поэтому распаривание электронов невозможно. Если в качестве центрального атома будет похожий элемент, но находящийся в третьем периоде, то для таких простых молекул, которые предлагаются в задании не следует при возбуждении переводить электроны с 3 s и 3 р на 3 d, так как на это необходимы большие затраты энергии. Так как у атома кислорода имеется два неспаренных электрона, то он может образовать две связи. Выписываем валентные электроны фтора: 2 s 22 p 5 У фтора имеется один неспаренный электрон. По представле-ниям Льюиса молекула OF2 может быть изображена следующим образом: . Далее определяем тип гибридизации центрального атома – кислорода. Для этого производим "сложение": s + p + p + p = 4 sp 3. При этом не следует писать 2 s или 2 р, так как речь идет не об электронах (например, на 2 s- подуровне), а их действительно 2, а об орбиталях, т.е. пространстве вероятного нахождения электронов. Рисуем четыре оси и гибридные облака. Подводим валентные орбитали F (это р -элемент). Получаем угловую молекулу с теоретическим валентным углом 109 о (рис. 2.5).
Рис. 2.5
Связи О–F – полярные, молекула в целом тоже полярна, так как в вершине угла заряд со знаком "+", а в противоположной стороне "-". Происходит оттягивание электронов в сторону F, т.е. образуется диполь. Две связи О–F – ковалентные, σ-типа.
Задание 2.2. Для двух приведенных комплексных соединений (табл. II. 3): определить степени окисления всех составляющих и указать комплексообразователь, лиганды, ионы внешней и внутренней сферы и координационное число. Записать уравнение диссоциации комплексного соединения.
Решение данного задания рассмотрим на примере 2-х комплексных соединений: Na[Co(SCN)4(H2O)2] и [Fe(NH3)5(NO2)]Cl2. Сначала проанализируем состав комплексного соединения. В комплексном соединении содержится сложный комплексный ион, который показан в квадратных скобках. Комплексный ион состоит из комплексообразователя и лигандов. Комплексообразователь записывается первым в квадратной скобке, а далее следуют лиганды. Лигандами могут быть как заряженные частицы: I, Cl, F, NO, NO, OH, CN, SCN, так и нейтральные молекулы: Н2О, NH3. Количество лигандов вокруг комплексообразователя называется его координационным числом. Комплексообразователь и лиганды связаны прочной ковалентной связью донорно-акцепторного типа. Комплексный ион является ионом внутренней сферы. Снаружи располагаются ионы внешней сферы. Ионы внешней и внутренней сферы связаны ионной связью. Если сложный комплексный ион заряжен отрицательно, т.е. является анионом, то ион внешней сферы записывается слева, и комплекс называется анионным. Если комплексный ион заряжен положительно, т.е. представляет из себя катионный комплекс, то ион внешней сферы записывается справа. В некоторых соединениях ионы внешней сферы отсутствуют, тогда внутренняя сфера имеет нулевой заряд, такие комплексы называются нейтральными. Учитывая степень окисления комплексных ионов (в первом соединении – [Co(SCN)4(H2O)2]1-, а во втором – [Fe(NH3)5NO2]2+, определяем, что первое соединение содержит анионный, а второе – катионный комплекс. Вокруг комплексообразователя Со3+ расположены лиганды: (SCN)и (Н2О)0, их число равно 6, а вокруг Fe3+ – лиганды (NH3)0 и (NO2)–, их число также равно 6. Ионами внешней сферы в указанных соединениях являются ионы Na+ и Clсоответственно. Исходя из вышесказанного данные комплексные соединения могут быть представлены следующими схемами (рис. 2.6 а, 2.6 б): Лиганды
Рис. 2.6 а. Схема комплексного соединения Na[Co(SCN)4(H2O)2] – – диаквотетрароданокобальтат (III) натрия
Рис. 2.6 б. Схема комплексного соединения [Fe(NH3)5 NO2]Cl2 – – дихлорид нитритопентаамминожелеза (III)
Так как между ионами внешней и внутренней сферы действует слабая ионная связь, то в растворе под действием молекул воды эта связь разрывается, т.е. происходит диссоциация молекулы комплексного соединения на ионы внешней и внутренней сферы: Na[Co(SCN)4(H2O)2] Na+ + [Co(SCN)4(H2O)2]; [Fe(NH3)5NO2]Cl2 [Fe(NH3)5NO2]2+ + 2Cl. Однако комплексный ион при этом сохраняет свою целостность. Комплекс перестает существовать, если разрывается внутренняя связь между комплексообразователем и лигандами. Используя данную информацию, представим в виде табл. 2.3 характеристики двух комплексных соединений. Следует иметь в виду, что необходимо указывать все степени окисления частиц, составляющих данное соединение. Заряд комплексообразователя определяют исходя из зарядов ионов внешней сферы, лигандов, их количества и нейтральности молекулы в целом. Определим заряд комплексообразователя для рассматриваемых комплексных соединений. Na+[Cox(SCN)(H2O)] [Fex(NH3)(NO)–]Cl 1+ х + 4(-1) + 2·0 = 0 х + 0·5 + (-1) + (-1)·2 = 0 х = +3 х = +3
Следовательно, комплексообразователем в 1-ом соединении является Со3+, а во втором – Fe3+.
Таблица 2.3
Таблица II.1.
Таблица II.2
Тема III. ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА Задание 3. 1. Запишите реакцию взаимодействия указанного по варианту элемента с кислородом. Используя приведенные в табл. III.1 данные, рассчитайте энтальпию образования оксида.
Дата добавления: 2014-10-23; Просмотров: 6427; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |