Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Закон Пуассона




Биномиальное распределение.

Для дискретной случайной величины Х, представляющей собой число появлений события А в серии из п независимых испытаний (см. лекцию 6), М (Х) можно найти, используя свойство 4 математического ожидания. Пусть Х 1 – число появлений А в первом испытании, Х 2 – во втором и т.д. При этом каждая из случайных величин Хi задается рядом распределения вида

Xi    
pi q p

Следовательно, М (Хi) = p. Тогда

Аналогичным образом вычислим дисперсию: D (Xi) = 0²· q + 1²· p – p ² = p – p ² = p (1 – p), откуда по свойству 4 дисперсии

Если р (Х = т) = , то М (Х) = (использо-валось разложение в ряд Тейлора функции ех).

Для определения дисперсии найдем вначале М (Х 2) =

=

Поэтому D (X) = a ² + a – a ² = a.

Замечание. Таким образом, обнаружено интересное свойство распределения Пуассона: математическое ожидание равно дисперсии (и равно единственному параметру а, определяющему распределение).




Поделиться с друзьями:


Дата добавления: 2014-10-23; Просмотров: 335; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.