![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Показательное распределение
Нормальный закон распределения вероятностей. Нормальная кривая. Функция Лапласа. Вычисление вероятности попадания в заданный интервал нормальной случайной величины. Правило трех сигм. Показательное распределение. Функция надежности. Показательный закон надежности. Определение. Непрерывная случайная величина называется распределенной по нормальному закону, если ее плотность распределения имеет вид: Замечание. Таким образом, нормальное распределение определяется двумя параметрами: а и σ. График плотности нормального распределения называют нормальной кривой (кривой Гаусса). Выясним, какой вид имеет эта кривая, для чего исследуем функцию (6.1). 1) Область определения этой функции: (-∞, +∞). 2) f (x) > 0 при любом х (следовательно, весь график расположен выше оси О х). 3) 4) 5) F (x – a) = f (a – x), то есть график симметричен относительно прямой х = а. 6) Примерный вид кривой Гаусса изображен на рис.3.
Рис.3. Найдем вид функции распределения для нормального закона: Перед нами так называемый «неберущийся» интеграл, который невозможно выразить через элементарные функции. Поэтому для вычисления значений F (x) приходится пользоваться таблицами. Они составлены для случая, когда а = 0, а σ = 1. Определение. Нормальное распределение с параметрами а = 0, σ = 1 называется нормированным, а его функция распределения
- функцией Лапласа. Замечание. Функцию распределения для произвольных параметров можно выразить через функцию Лапласа, если сделать замену: Найдем вероятность попадания нормально распределенной случайной величины на заданный интервал: Пример. Случайная величина Х имеет нормальное распределение с параметрами а = 3, σ = 2. Найти вероятность того, что она примет значение из интервала (4, 8). Решение. 16.6.Правило «трех сигм». Найдем вероятность того, что нормально распределенная случайная величина примет значение из интервала (а - 3 σ, а + 3 σ): Следовательно, вероятность того, что значение случайной величины окажется вне этого интервала, равна 0,0027, то есть составляет 0,27% и может считаться пренебрежимо малой. Таким образом, на практике можно считать, что все возможные значения нормально распределенной случайной величины лежат в интервале (а - 3 σ, а + 3 σ). Полученный результат позволяет сформулировать правило «трех сигм»: если случайная величина распределена нормально, то модуль ее отклонения от х = а не превосходит 3σ. Определение. Показательным (экспоненциальным) называют распределение вероятностей непрерывной случайной величины Х, которое описывается плотностью
В отличие от нормального распределения, показательный закон определяется только одним параметром λ. В этом его преимущество, так как обычно параметры распределения заранее не известны и их приходится оценивать приближенно. Понятно, что оценить один параметр проще, чем несколько. Найдем функцию распределения показательного закона:
Теперь можно найти вероятность попадания показательно распределенной случайной величины в интервал (а, b):
Значения функции е-х можно найти из таблиц.
16.8.Функция надежности.
Пусть элемент (то есть некоторое устройство) начинает работать в момент времени t0 = 0 и должен проработать в течение периода времени t. Обозначим за Т непрерывную случайную величину – время безотказной работы элемента, тогда функция F (t) = p (T > t) определяет вероятность отказа за время t. Следовательно, вероятность безотказной работы за это же время равна R (t) = p (T > t) = 1 – F (t). Эта функция называется функцией надежности.
Дата добавления: 2014-10-23; Просмотров: 1364; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |