КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Плоскость в пространстве. Общим уравнением плоскости в пространстве называется уравнение
Общим уравнением плоскости в пространстве называется уравнение . Вектор называется нормальным вектором плоскости. Если даны две плоскости с нормальными векторами и , то косинус угла между этими плоскостями определяется по формуле (этот угол всегда острый или прямой) . Если даны три точки , и , то уравнение плоскости, проходящей через три точки находится по формуле: . Задание 1. По координатам вершины пирамиды найти: 1. длину ребер и ; 2. угол между ребрами и ; 3. площадь грани ; 4. объем пирамиды ; 5. уравнение прямых ; ; 6. уравнения плоскостей и ; 7. угол между плоскостями и . Пример. Выполнить задание 1, если , , , . 1) Если заданы точки , , и то координаты векторов , и их длины , равны: а) , . б) , . 2) Угол между ребрами и находим как угол между векторами и . Из определения скалярного произведения следует, что этот угол вычисляется по формуле: . Скалярное произведение находим через декартовы координаты: . Тогда . Откуда (вычисления проводим на инженерном калькуляторе) 3) ‑ площадь треугольника, построенного на векторах и . Зная их декартовы координаты, находим векторное произведение , , , . Тогда . 4) Учитывая геометрический смысл смешанного произведения векторов, получим формулу для вычисления объема пирамиды: . Найдем координаты вектора : Смешанное произведение этих векторов найдем через их декартовы координаты . Отсюда . 5) Найдем канонические уравнение прямых и . За направляющие вектора примем вектора и . За точку лежащую на этих векторах примем точку прямая : ; прямая : . 6) Уравнение плоскости, проходящей через три точки ,и находится по формуле: . Составимуравнение плоскости, проходящей через три точки , , . или . Разложив определить по первой строке, получим . Итак, уравнение плоскости найдено . Коэффициенты уравнения образуют нормальный вектор . Аналогично составимуравнение плоскости, проходящей через три точки , , . или . Разложив определить по первой строке, получим . Итак, уравнение плоскости имеет вид . Коэффициенты уравнения образуют нормальный вектор . 7) Угол , образованный двумя плоскостями и находится по формуле , где и ‑ нормали плоскостей и . Подставляя их значения из пункта 6) находим величину угла (расчеты выполняем на инженерном калькуляторе) Задание №2 а) Найти решение системы с помощью правила Крамера; б) Записать систему в матричной форме и решить средствами матричного исчисления.
Дата добавления: 2014-10-31; Просмотров: 440; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |