Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Анализ эффективности использования производственного потенциала предприятия




 

Предприятие располагает тремя производственными ре­сурсами (сырьем, оборудованием, электроэнергией) и может организовать производство продукции двумя различными спо­собами. Расход ресурсов за один месяц и общий ресурс при каждом способе производства даны в табл. 21.2 (в усл. ед.).

 

 

При первом способе производства предприятие выпускает за один месяц 3 тыс. изделий, при втором — 4 тыс. изделий.

Сколько месяцев должно работать предприятие каждым из этих способов, чтобы при наличных ресурсах обеспечить мак­симальный выпуск продукции?

Решение. Составим математическую модель задачи. Обо­значим: x 1 — время работы предприятия первым способом, x 2 — время работы предприятия вторым способом.

Математическая модель имеет вид

 

 

при ограничениях:

 

 

Приведем задачу к каноническому виду:

 

 

при ограничениях:

 

 

Составляем симплексную таблицу 1-го шага (табл. 21.3).

 

 

Получим решение:

 

 

В индексной строке Δ j имеются две отрицательные оцен­ки, значит, найденное решение не является оптимальным и его можно улучшить. В качестве ключевого столбца следу­ет принять столбец базисной переменной х 2, а за ключевую строку взять строку переменной x 3, где min (4/2,3/l, 8/1) = min (2, 3, 8) = 2.

Ключевым элементом является (2). Вводим в столбец ба­зисной переменной х 2, выводим х 3. Составляем симплексную таблицу 2-го шага (табл. 21.4).

Получим

 

 

В индексной строке имеется одна отрицательная оценка. Полученное решение можно улучшить. Ключевым элементом является (1/2). Составляем симплексную таблицу 3-го шага (табл. 21.5).

 

 

 

Все оценки свободных переменных Δ j ≥ 0, следовательно, найденное опорное решение является оптимальным:

 

 

Таким образом, по первому способу предприятие должно работать два месяца, по второму — один месяц, при этом мак­симальный выпуск продукции составит 10 тыс. ед.




Поделиться с друзьями:


Дата добавления: 2014-10-15; Просмотров: 370; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.