Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод множників Лагранжа




Для розв’язування задач нелінійного програмування не існує, як уже зазначалося, універсального методу, а тому доводиться застосовувати багато методів і обчислювальних алгоритмів, які ґрунтуються, здебільшого, на теорії диференціального числення, і вибір їх залежить від конкретної постановки задачі та форми економіко-математичної моделі.

Методи нелінійного програмування бувають прямі та непрямі. Прямими методами оптимальні розв’язки відшукують у напрямку найшвидшого збільшення (зменшення) цільової функції. Типовими для цієї групи методів є градієнтні. Непрямі методи полягають у зведенні задачі до такої, знаходження оптимуму якої вдається спрос­тити. До них належать, насамперед, найбільш розроблені методи квадратичного та сепарабельного програмування.

Оптимізаційні задачі, на змінні яких не накладаються обмеження, розв’язують методами класичної математики. Оптимізацію з обмеженнями-рівностями виконують методами зведеного градієнта, скажімо методом Якобі, та множників Лагранжа. У задачах оптимізації з обмеженнями-нерівностями досліджують необхідні та достатні умови існування екстремуму Куна—Таккера.

Розглянемо метод множників Лагранжа на прикладі такої задачі нелінійного програмування:

(1)

за умов

(2)

,

де функції і диференційовані.

Ідея методу множників Лагранжа полягає в заміні даної задачі простішою: на знаходження екстремуму складнішої функції, але без обмежень. Ця функція називається функцією Лагранжа і подається у вигляді:

(3)

де λ і — не визначені поки що величини, так звані множники Лагранжа.

Знайшовши частинні похідні функції L за всіма змінними і прирівнявши їх до нуля:

запишемо систему

(4)

що є, як правило, нелінійною.

Розв’язавши цю систему, знайдемо і — стаціонарні точки. Оскільки їх визначено з необхідної умови екстремуму, то в них можливий максимум або мінімум. Іноді стаціонарна точка є точкою перегину (сідлова точка). Отже, для визначення достатніх умов екстремуму та діагностування його типу існує спеціальний алгоритм.

Розв’яжемо методом множників Лагранжа наведену далі задачу.

Задача 1. Акціонерне товариство з обмеженою відповідальністю відвело 1200 га ріллі під основні рослинницькі культури — озиму пшеницю та цукрові буряки.

Техніко-економічні показники вирощування цих культур відбиває таблиця:

 

Показник Площа, га, відведена
під озиму пшеницю, х 1 під цукровий буряк, х 2
Урожайність, т/га    
Ціна, грн./т    
Собівартість, грн./т

 

Знайти оптимальну площу посіву озимої пшениці та цукрових буряків.

Нехай х 1 — площа ріллі, відведена під сотні га озимої пшениці; х 2 — площа ріллі, відведена під цукрові буряки, сотні га.

Зауважимо, що собівартість однієї тони пшениці та цукрових буряків залежить від відповідної площі посіву.

Запишемо економіко-математичну модель. За критерій оптимальності візьмемо максимізацію валового прибутку:

за умов

.

Запишемо функцію Лагранжа:

Візьмемо частинні похідні і прирівняємо їх до нуля:

Із цієї системи визначимо сідлову точку. З першої та другої рівностей знайдемо вирази для l1 і прирівняємо їх:

,

або

(6.19)

Із останнього рівняння цієї системи маємо:

.

Підставивши значення у (6.19), дістанемо:

або .

Розв’язавши це квадратне рівняння, дістаємо (178 га); (553 га).

Відповідно дістаємо: (1022 га); (647 га). Тобто сідловими точками є такі:

Обчислимо значення цільової функції у цих точках:

Отже, цільова функція набуває максимального значення, якщо озима пшениця вирощується на площі 647 га, а цукровий буряк — на площі 553 га.




Поделиться с друзьями:


Дата добавления: 2014-10-31; Просмотров: 788; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.