КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Решение. 1а. Определяем структурные характеристики ряда распределе-ния, т.е
1а. Определяем структурные характеристики ряда распределе-ния, т.е. моду медиану, квартили, децили по рассмотренным выше формулам этих характеристик для интервальных вариационных рядов. Для выбора соответствующего интервала предварительно опре-делим накопленные частоты , (табл. 5.4, гр. 4). Модальный интервал – это интервал с наибольшей частотой , тогда грн. Большинство семей имеют среднедушевые доходы в размере 196,67 грн. Медианным является интервал , т.к. для него первая накопленная частота больше половины объема совокупности, т.е. 120>100. Тогда медиана будет равна: грн. Половина семей имеют среднедушевые доходы, не превышаю-щие доходы 202 грн., а у другой половины семей среднедушевые доходы, соответственно, выше 202 грн. Интервал, в котором будет находиться первый квартиль() рас-пределения, , т.к. ему соответствует первая накопленная час-тота , большая ; а интервал, в котором находится третий квартиль(), будет , т.к. ему соответствует > . Тогда соответствующие квартили будут равны: грн; грн. Среднедушевые доходы, не превышающие 180 грн., получают не менее четверти (25%) из всей совокупности семей, а в размере, не превышающем 230грн., не менее 75% всех семей. Более детальная характеристика распределения может быть получена на основе децилей распределения. Интервалы соответствующих децилей определяются аналогично по соответствующим накопленным частотам. Например, находим первую , - это будет ; тогда соответствующий ей интервал будет тем интервалом, в котором находится первый дециль (d1) – и т.д. Рассчитаем соответствующие децили: грн; грн; грн; грн; грн; грн; грн; грн; грн. Первый дециль показывает, что у 10% семей с самым низким среднедушевым доходом самый высокий размер среднедушевого дохода составляет 160 грн., а девятый дециль, - что среди 10% семей с самым высоким уровнем дохода – нижняя его граница составляет 254 грн. 1б. Анализ формы, дифференциации и концентрации распределения проводится с помощью системы специальных коэффициентов, в частности, рассчитываются: - относительный показатель асимметрии (), показатель эксцесса (), коэффициент децильной дифференциации (), индекс Джинни (КДж). Дополнительно используется графическое изображение степеней неравномерности распределения вариационного ряда в виде кривой Лоренца. Относительный показатель асимметрии исчислим как: ; грн; 33,3 грн; . , т.е. это свидетельствует о наличии правосторонней асим-метрии, при этом она незначительная, т.к. . Наиболее точ-ным выступает коэффициент асимметрии, рассчитанный на основе третьего центрального момента: ; ; Для проверки существенности (или несущественности) асимметрии определяется средняя квадратическая погрешность коэффициента асимметрии(): ; ,т.е.асим-метрия несущественна в данном вариационном ряду. Так как приведенное распределение симметричное, то для таких распределений дополнительно рассчитывается коэффициент эксцесса: ; ; ; . Значение свидетельствует о том, что распределение низко-вершинное или плосковершинное. Для проверки гипотезы о статистической существенности эксцес-са рассчитываем среднеквадратическую ошибку эксцесса: . Если , то гипотеза о статистической существенности экс-цесса не отвергается: т.е. 6,72 >3. Это подтверждает ги-потезу о статистической значимости (или существенности) эксцесса. Для оценки степени дифференциации признака в совокупности рассчитаем коэффициент децильной дифференциации: Это означает, что в 1,6 раза наименьший среднедушевой доход 10% семей, имеющих наибольшие доходы, больше наибольшего сред-недушевого дохода из 10% семей, имеющих самые низкие среднедуше-вые доходы. Анализ дифференциации (или концентрации) распределения признаков основан на построении кривой Лоренца и расчета индекса дифференциации или коэффициента Джинни. По данным таблицы 5.4 построим кумулятивные относительные показатели изучаемого признака (среднедушевого дохода) и частот (чис-ла семей), т.е. относительные показатели числа единиц в группах и раз-мерах признака (среднедушевые доходы) выражаются в относительных величинах (в долях или процентах к итогу) и определяются их накоп-ленные значения (табл.5.5, гр.5 и 8). Для построения кривой Лоренца по горизонтальной оси графика откладываются значения графы 5, а по вер-тикальной - значения графы 8, и соединение этих точек образует кривую Лоренца, характеризующую равномерность и степень концентрации распределения рабочих по уровню среднедушевого дохода (рис. 5.3).
Рис.5.3. Кривая Лоренца
Для количественной оценки меры концентрации рассчитывает-ся коэффициент концентрации Джинни: = 1 – 2 · 0,538015 + 0,1500335 = 0,074. Соотношение линий равномерного и фактического распределения (рис.5.3), а также значение коэффициента близкое к 0, свидетельствует о достаточно равномерном распределении семей по среднедушевомудоходу и, соответственно, о незначительной степени концентрации. 2. Проверяем гипотезу о соответствии эмпирического распределения семей по среднедушевому доходу нормальному закону распределения, используя критерий согласия К. Пирсона или χ2 - критерий. Таблица 5.4 Распределение семей по среднедушевому доходу
Таблица 5.5
Дата добавления: 2014-11-25; Просмотров: 595; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |