Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Кривая второго порядка может быть задана уравнением




Лекция № 4 Кривые второго порядка.

Цель: Ввести понятия кривых второго порядка, их канонические уравнения. Для окружности на примере рассмотреть нахождение центра и радиуса по заданному каноническому уравнению. Для эллипса и гиперболы ввести понятия фокусов, эксцентриситета и директрис. Научить составлять уравнения кривых второго порядка, используя различные данные.

 

  1. Окружность.
  2. Эллипс.
  3. Гипербола.
  4. Парабола.

 

Ах2 + 2Вху + Су2 + 2Dx + 2Ey + F = 0.

Существует система координат (не обязательно декартова прямоугольная), в которой данное уравнение может быть представлено в одном из видов, приведенных ниже.

1) - уравнение эллипса.

2) - уравнение “мнимого” эллипса.

3) - уравнение гиперболы.

4) a2x2 – c2y2 = 0 – уравнение двух пересекающихся прямых.

5) y2 = 2px – уравнение параболы.

6) y2 – a2 = 0 – уравнение двух параллельных прямых.

7) y2 + a2 = 0 – уравнение двух “мнимых” параллельных прямых.

8) y2 = 0 – пара совпадающих прямых.

9) (x – a)2 + (y – b)2 = R2 – уравнение окружности.

1. Окружность.

В окружности (x – a)2 + (y – b)2 = R2 центр имеет координаты (a; b).

Пример. Найти координаты центра и радиус окружности, если ее уравнение задано в виде: 2x2 + 2y2 – 8x + 5y – 4 = 0.

Для нахождения координат центра и радиуса окружности данное уравнение необходимо привести к виду, указанному выше в п.9. Для этого выделим полные квадраты:

x2 + y2 – 4x + 2,5y – 2 = 0

x2 – 4x + 4 –4 + y2 + 2,5y + 25/16 – 25/16 – 2 = 0

(x – 2)2 + (y + 5/4)2 – 25/16 – 6 = 0

(x – 2)2 + (y + 5/4)2 = 121/16

Отсюда находим О(2; -5/4); R = 11/4.

 

2. Эллипс.

Определение: Эллипсом называется линия, заданная уравнением .

Определение: Фокусами называются такие две точки, сумма расстояний от которых до любой точки эллипса есть постоянная величина.

у

 




Поделиться с друзьями:


Дата добавления: 2014-11-26; Просмотров: 607; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.