КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лекция №1 Системы координат
Цель: Ввести понятие систем координат. Рассмотреть два вида систем: декартовую прямоугольную и полярную системы координат. Научить переводить координаты точек из одной системы в другую при помощи формул связи между системами. Ввести формулы расстояния между двумя точками и деления отрезка в данном отношении и закрепить их на практике.
1. Для определения положения произвольной точки могут использоваться различные системы координат. Положение произвольной точки в какой-либо системе координат должно однозначно определяться. Понятие системы координат представляет собой совокупность точки начала отсчета (начала координат) и некоторого базиса. Как на плоскости, так и в пространстве возможно задание самых разнообразных систем координат. Выбор системы координат зависит от характера поставленной геометрической, физической или технической задачи. Рассмотрим некоторые наиболее часто применяемые на практике системы координат. 2. Зафиксируем в пространстве точку О, и рассмотрим произвольную точку М. Положение точки в пространстве будет определяться координатами на осях ОХ, ОУ, OZ. Координаты точки – это расстояния от начала координат до проекций точки М на оси. Определение. Декартовой системой координат в пространстве называется совокупность точки и базиса. Точка называется началом координат. Прямые, проходящие через начало координат называются осями координат. 1-я ось – ось абсцисс 2-я ось – ось ординат 3-я ось – ось аппликат 3. Определение. Точка О называется полюсом, а луч l – полярной осью. Суть задания какой- либо системы координат на плоскости состоит в том, чтобы каждой точке плоскости поставить в соответствие пару действительных чисел, определяющих положение этой точки на плоскости. В случае полярной системы координат роль этих чисел играют расстояние точки от полюса и угол между полярной осью и радиус– вектором этой точки. Этот угол j называется полярным углом. М r r =
j 0 1 Можно установить связь между полярной системой координат и декартовой прямоугольной системой, если поместить начало декартовой прямоугольной системы в полюс, а полярную ось направить вдоль положительного направления оси Ох. Тогда координаты произвольной точки в двух различных системах координат связываются соотношениями: x = rcosj; y = rsinj; x2 + y2 = r2
4. Пусть даны точки А(х1, у1, z1) и В(х2, у2, z2). Расстояние между ними находится по формуле . Координаты точки М, делящей отрезок АВ в отношении l, находятся по формулам:
Дата добавления: 2014-11-26; Просмотров: 851; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |