![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Пружинный, физический и математический маятники
Гармонический осциллятор. Гармоническим осциллятором называется система, совершающая колебания, описываемые уравнением вида (5.6):
Колебания гармонического осциллятора являются важным примером периодического движения и служат точной или приближенной моделью во многих задачах классической и квантовой физики. Примерами гармонического осциллятора являются пружинный, физический и математический маятники. Пружинный маятник – это груз массой m, подвешенный на абсолютно упругой пружине и совершающий гармонические колебания под действием упругой силы F=-kx, где k -коэффициент упругости, в случае пружины называемый жесткостью. Уравнение движения маятника
или
Из выражений (5.12) и (5.1) следует, что пружинный маятник совершает гармонические колебания по закону
и периодом
Формула (5.14) справедлива для упругих колебаний в пределах, в которых выполняется закон Гука, т.е. когда масса пружины мала по сравнению с массой тела. Потенциальная энергия пружинного маятника, согласно (5.10) и (5.13), равна
(4.5) момент М вращающей силы можно записать в виде
где J – момент инерции маятника относительно оси, проходящей через точку О, Уравнение (5.15) можно записать в виде или
Принимая
получим уравнение
Из выражения (5.17) следует, что при малых колебаниях физический маятник совершает гармонические колебания с циклической частотой w0 (см. (5.18)) и периодом
где Математический маятник – это идеализированная система, состоящая из материальной точки массой т, подвешенной на нерастяжимой невесомой нити, и колеблющаяся под действием силы тяжести. Хорошим приближением математического маятника является небольшой тяжелый шарик, подвешенный на тонкой длинной нити. Момент инерции математического маятника
где Так как математический маятник можно представить как частный случай физического маятника, предположив, что вся его масса сосредоточена в одной точке – центре его масс, то, подставив выражение (5.19) в формулу (5.18), получим выражение для периода малых колебаний математического маятника
Сравнивая формулы (5.18) и (5.20), видим, что если приведенная длина L физического маятника равна длине
Дата добавления: 2014-11-16; Просмотров: 12274; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |