КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
И одинаковой частоты. Биения
Сложение гармонических колебаний одного направления
Колеблющееся тело может участвовать в нескольких колебательных процессах, тогда необходимо найти результирующее колебание, иными словами, колебания необходимо сложить. Сложим гармонические колебания одного направления и одинаковой частоты , воспользовавшись методом вращающегося вектора амплитуды. Построим векторные диаграммы этих колебаний (рис. 29). Так как векторы A1 и A2 вращаются с одинаковой угловой скоростью wо, то разность фаз (j2-j1)
между ними остается постоянной. Очевидно, что уравнение результирующего колебания будет: . (5.21)
Таким образом, тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает также гармонические колебания в том же направлении и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз складываемых колебаний. Проанализируем выражение (5.22) в зависимости от разности фаз : 1) , тогда А=А1+А2, т.е. амплитуда результирующего колебания А равна сумме амплитуд складываемых колебаний; 2) , тогда , т.е. амплитуда результирующего колебания равна разности амплитуд складываемых колебаний. Для практики особый интерес представляет случай, когда два складываемых гармонических колебания одинакового направления мало отличаются по частоте. В результате сложения этих двух колебаний получаются колебания с периодически изменяющейся амплитудой. Периодические изменения амплитуды колебаний, возникающие при сложении двух гармонических колебаний с близкими частотами, называются биениями. Пусть амплитуды складываемых колебаний равны А, а частоты равны w и w+Dw причем Dw<w. Начало отсчета выберем так, чтобы начальные фазы обоих колебаний были равны нулю: Складывая эти выражения и учитывая, что во втором сомножителе . (5.23) Получившееся выражение есть произведение двух колебаний. Так как . (5.24) Частота изменения Аб в два раза больше частоты изменения косинуса
Определение частоты тона биений между эталонным и измеряемым колебаниями - наиболее широко применяемый на практике метод сравнения измеряемой величины с эталонной. Метод биений используется для настройки музыкальных инструментов, анализа слуха и т. д.
Дата добавления: 2014-11-16; Просмотров: 1606; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |