Краткие теоретические сведения для выполнения контрольной работы № 4 и решение типовых задач
Функция называется первообразной для функции на интервале , конечном или бесконечном, если в любой точке этого интервала функция дифференцируема и имеет производную .
Совокупность всех первообразных для функции , определенных на интервале , называется неопределенным интегралом от функции на этом интервале и обозначается символом
.
Метод подведения под знак дифференциала следует из свойства инвариантности неопределенного интеграла.
Пусть дан интеграл . Справедливо равенство
,
где – некоторая непрерывно дифференцируемая функция.
Таблица интегралов
1.
8.
2.
9.
3.
10.
4.
11.
5.
12.
6.
13.
7.
14.
15.
При интегрировании методом подведения под знак дифференциала необходимо иметь в виду следующие равенства:
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление