КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Характеристика вагонов 81-717(714) 3 страница
VvVi = V2N2 или F,: V2 = N2:Nl Таким образом, объемы растворов реагирующих веществ обратно пропорциональны их нормальностям. На основании этой зависимости можно не только вычислять требуемые для проведения реакций объемы растворов, но и обратно, по объемам затраченных на реакцию растворов находить их концентрации. Пример 1. Сколько миллилитров 0,3 п. раствора хлорида натрия надо прибавить к 150 мл 0,16 п. раствора нитрата серебра, чтобы осадить все находящееся в растворе серебро в виде хлорида серебра? Подставляя данные задачи в последнее уравнение, получи.'.-: 150/F2 = 0,3/0,16, откуда V2 = 0Д6 ■ 150/0,3 = 80 мл Пример 2. Для нейтрализации 40 мл раствора серной кислоты потребовалось прибавить к нп.м 24 мл 0,2 н. раствора щелочи. Определить нормальноеib взятого раствора H2S04. Обозначив неизвестную нормальность раствора серной кислоты через х, получим: 40: 24 = 0,2: х, откуда х = 24 ■ 0,2/40 = 0,12 и. 75. Гидраты и кристаллогидраты. Большинство веществ, находящихся в кристаллическом состоянии, растворяются в жидкостях с поглощением теплоты. Однако при растворении в воде гидроксида натрия, карбоната калия, безводного сульфата меди и многих других веществ происходит заметное повышение температуры. Выделяется теплота также при растворении в воде некоторых жидкостей и всех газов. Количество теплоты, поглощающейся (или выделяющейся) при растворении одного моля вещества, называется теплотой растворения этого вещества. Теплота растворения имеет отрицательное значение, если при растворении теплота поглощается, и положительное — при выделении теплоты. Например, теплота растворения нитрата аммония равна •—26,4 кДж/моль, гидроксида калия +55,6 кДж/моль и т. д. * Процесс растворения сопровождается значительным возрастанием энтропии системы, так как в результате равномерного распределения частиц одного вещества в другом резко увеличивается число мнкросостояний системы. Поэтому, несмотря па эндотермич-ность растворения большинства кристаллов, изменение энергии Гиббса системы при растворении отрицательно и процесс протекает самопроизвольно. При растворении кристаллов происходит их разрушение, что требует затраты энергии. Поэтому растворение должно было бы сопровождаться поглощением теплоты. Если же наблюдается обратный эффект, то это показывает, что одновременно с растворением происходит какое-то взаимодействие между растворителем и растворенным веществом, при котором выделяется в виде теплоты больше энергии, чем ее расходуется иа разрушение кристаллической решетки.
Действительно, в настоящее время установлено, что при растворении многих веществ их молекулы (или ионы) связываются с молекулами растворителя, образуя соединения, называемые с о л ь в а т а м и (от латинского solvere — растворять); этот процесс называется сольватацией. В частном случае, когда растворителем является вода, эти соединения называются гидратами, а самый процесс их образования — гидратацией. В зависимости от природы растворенного вещества, сольваты могут образовываться различными путями. Так, при растворении веществ с ионной структурой молекулы растворителя удерживаются около иона силами электростатического притяжения. В этом случае говорят о ион-днпольном взаимодействии. Кроме того, может иметь место донорно-акцепторпое взаимодействие. Здесь коны растворенного вещества обычно выступают в качестве акцепторов, а молекулы растворителя — в качестве доноров электронных пар. Ясно, что в таком взаимодействии могут участвовать растворители, молекулы которых обладают неподелепными электронными парами (например, вода, аммиак). Гидраты, образующиеся в результате донорно-акцепторного взаимодействия, представляют^ собой частный случай комплексных соединений, рассматриваемых в главе XVIII (аква комплексы — см. § 204). При растворении веществ с молекулярной структурой сольваты образуются вследствие диполь-дипольного взаимодействия. Диполи растворенного вещества могут быть при этом постоянными (у веществ с полярными молекулами) или наведенными (у веществ с пеполярными молекулами). Предположение о существовании в водных растворах гидратов высказано и обосновано в восьмидесятых годах XIX века Д. И. Менделеевым, который считал, что растворение— не только физический, но и химический процесс, что вещества, растворяющиеся в воде, образуют с ней соединения. Об этом свидетельствует прежде всего изучение теплот растворения. Подтверждением химизма процесса растворения является и тот факт, что многие вещества выделяются из водных растворов в виде кристаллов, содержащих так называемую кристаллизационную воду (см. ниже), причем на каждую молекулу растворенного вещества приходится определенное число молекул воды. «Это, — писал Д. И. Менделеев,— дает повод думать, что и в самих растворах имеются такие же или подобные им соединения растворенных тел с растворителем, только в жидком (и отчасти разложенном) виде». Гидраты, как правило, нестойкие соединения, во многих случаях разлагающиеся уже при выпаривании растворов. Но иногда гидраты настолько прочны, что при выделении растворенного вещества из раствора вода входит в состав его кристаллов. Вещества, в кристаллы которых входят молекулы воды, называются кристаллогидратами, а содержащаяся в них вода — к р и -. с т а л л и з а ц и о и н о й. Состав кристаллогидратов принято изображать формулами, показывающими, какое количество кристаллизационной воды содержит кристаллогидрат. Например, кристаллогидрат сульфата меди (медный купорос), содержащий на один моль CuS04 пять молей воды, изображается формулой CLiSO.i-5H20; кристаллогидрат сульфата натрия (глауберова соль)—формулой Na2SCV 10К2О. Прочность связи между веществом и кристаллизационной водой в кристаллогидратах различна. Многие из них теряют кристаллизационную воду уже при комнатной температуре. Так, прозрачные кристаллы соды (НагС03- 10Н2О) легко «выветриваются», — теряя кристаллизационную воду, становятся тусклыми и постепенно рассыпаются в порошок. Для обезвоживания других кристаллогидратов требуется довольно сильное нагревание. Процесс образования гидратов протекает с выделением теплоты. При растворении вещества, подвергающегося гидратации, общий тепловой эффект складывается из теплового эффекта собственно растворения и теплового эффекта гидратации. Поскольку первый из этих процессов эндотермичен, а второй экзотермичен, то общий тепловой эффект процесса растворения, равный алгебраической сумме тепловых эффектов отдельных процессов, может быть как положительным, так и отрицательным. 76. Растворимость. Растворимостью называется способность вещества растворяться в том или ином растворителе. Мерой растворимости вещества при данных условиях служит содержание его в насыщенном растворе. Поэтому численно растворимость может быть выражена теми же способами, что и состав, например, процентным отношением массы растворенного вещества к массе насыщенного раствора или количеством растворенного вещества, содержащимся в 1 л насыщенного раствора. Часто растворимость выражают также числом единиц массы безводного вещества, насыщающего при данных условиях 100 единиц массы растворителя; иногда выраженную этим способом растворимость называют коэффициентом растворимости. Растворимость различных веществ в воде изменяется в широких пределах. Если в 100 г воды растворяется более 10 г вещества, то такое вещество принято называть хорошо растворимым; если растворяется менее 1 г вещества — малорастворимым и, наконец, практически нерастворимым, если в раствор переходит менее 0,01 г вещества. Принципы, позволяющие предсказать растворимость вещества, пока ке известны. Однако обычно вещества, состоящие из полярных молекул, и вещества с ионным типом связи лучше растворяются в полярных растворителях (вода, спирты, жидкий аммиак), а неполярные вещества — в неполярных растворителях (бензол, сероуглерод), Растсорение большинства твердых тел сопровождается поглощением теплоты. Это объясняется затратой значительного количества энергии на разрушение кристаллической решетки твердого тела, что обычно не полностью компенсируется энергией, выделяющейся при образовании гидратов (сольватов). Прилагая принцип Ле Шателье к равновесию между веществом в кристаллическом состоянии п его насыщенным раствором Кристалл -f- Растворитель ^=fc Насыщенный раствор ± Q приходим к выводу, что в тех случаях, когда вещество растворяется с поглощением энергии, повышение температуры должно приводить к увеличению его растворимости. Если же, однако, энергия гидратации (сольватации) достаточно велика, чтобы образование раствора сопровождалось выделением энергии, растворимость с ростом температуры понижается. Это происходит, например, при растворении в воде щелочей, многих солей лития, магния, алюминия. Зависимость между растворимостью и температурой очень удобно изображать графически — в виде кривых растворимости. Для построения кривой растворимости откладывают на горизонтальной оси температуру, а на вертикальной — растворимость вещества при соответствующей температуре. На рис. 75 приведено несколько характерных кривых растворимости. Резко поднимающиеся вверх кривые растворимости нитратов калия, свинца, серебра показывают, что с повышением
температуры растворимость этих веществ сильно возрастает. Растворимость хлорида натрия лишь незначительно изменяется по мере повышения температуры, что показывает почти горизонтальная кривая растворимости этой соли. Более сложный вид имеет кривая растворимости сульфата натрия (рис. 76). До 32 °С эта
Температура^ Рис. 75. Зависимость растворимости некоторых солей в воде от температуры. Рис- 76. Зависимость растворимости сульфата натрия в воде от температуры. кривая круто поднимается, что указывает на быстрое увеличение растворимости. При 32 °С происходит резкий излом кривой, после чего она идет несколько вниз. Следовательно, сульфат натрия обладает наибольшей растворимостью при 32 °С. Наличие максимума на кривой растворимости сульфата натрия объясняется тем, что ниже 32 °С в равновесии с насыщенным раствором находится кристаллогидрат Na2S04- 10Н2О, растворение которого сопровождается поглощением теплоты; но прн более высоких температурах твердая фаза, находящаяся в равновесии с насыщенным раствором, представляет собой безводную соль Na2SOi, растворяющуюся с выделением теплоты. При растворении твердых тел в воде объем системы обычно изменяется незначительно. Поэтому растворимость веществ, находящихся в твердом состоянии, практически ие зависит от давления. Жидкости также могут растворяться в жидкостях. Некоторые из них неограниченно растворимы одна в другой, т. е. смешиваются друг с другом в любых пропорциях, как, например, спирт и вода, другие — взаимно растворяются лишь до известного предела. Так, если взболтать диэтиловын эфир с водой, то образуются два слоя: верхний представляет собой насыщенный раствор воды в эфире, а нижний — насыщенный раствор эфира в воде. В большинстве подобных случаев с повышением температуры взаимная растворимость жидкостей увеличивается до тех пор, пока не будет достигнута температура, при которой обе жидкости смешиваются в любых пропорциях. Температура, прн которой ограниченная взаимная растворимость жидкостей переходит в неограниченную, называется критической температурой растворения. Так, прн температуре ниже 66,4 °С фенол ограниченно растворим в воде, а вода ограниченно растворима в феноле. Температура 66,4 °С — критическая температура растворения для системы вода — фенол: начиная с этой температуры, обе жидкости неограниченно растворимы друг в друге. Как и в случае растворения твердых тел, взаимное растворение жидкостей обычно не сопровождается значительным изменением объема. Поэтому взаимная растворимость жидкостей мало зависит от давления и заметно возрастает лишь при очень высоких давлениях (порядка тысяч атмосфер). Если в систему, состоящую из двух иесмешивагощихся жидкостей, ввести третье вещество, способное растворяться в каждой из этих жидкостей, то растворенное вещество будет распределяться между обеими жидкостями пропорционально своей растворимости в каждой из них. Отсюда вытекает закон распределения, согласно которому вещество, способное растворяться в двух несме-ишвающихся растворителях, распределяется между ними так, что отношение его концентраций в этих растворителях при постоянной температуре остается постоянным, независимо от общего количества растворенного вещества: С/С, = К Здесь С\ и Сг—концентрации растворенного вещества в первом н втором растворителях; /(— так называемый коэффициент распределения. Так, коэффициент распределения пода между водой и хлороформом равен 130. Если к воде, содержащей растворенный под, добавить ие смешивающийся с нею хлороформ, взболтать эту систему и дать ей отстояться, то после установления равновесия концентрация иода в хлороформе окажется в 130 раз более высокой, чем в воде, независимо от общего количества растворенного иода. Таким образом с помощью хлороформа можно извлечь (экстрагировать) из воды преобладающую часть растворенного в ней иода. Такой, основанный на законе распределения способ извлечения растворенного вещества из раствора с помощью второго растворителя, не смешивающегося с первым, называется экстракцией и широко применяется в лабораторной практике и в химической промышленности. Растворение газов в воде представляет собой экзотермический процесс. Поэтому растворимость газов с повышением температуры уменьшается. Если оставить в теплом помещении стакан с холодной водой, то внутренние стенки его покрываются пузырьками газа — это воздух, который был растворен в воде, выделяется из нее вследствие нагревания. Кипячением можно удалить из воды весь растворенный в ней воздух. Однако растворение газов в органических жидкостях нередко сопровождается поглощением теплоты; в подобных случаях с ростом температуры растворимость газа увеличивается. При растворении газа в жидкости устанавливается равновесие: Газ + Жидкость ч=Ь Насыщенный раствор газа в жидкости Прн этом объем системы существенно уменьшается. Следовательно, повышение давления должно приводить к смещению равновесия вправо, т. е. к увеличению растворимости газа. К этому же выводу можно прийти, исходя из динамического характера равновесия между газом и его раствором в жидкости. Молекулы газа, находящиеся над жидкостью в закрытом сосуде, бомбардируют поверхность жидкости и растворяются в жидкости со скоростью, пропорциональной концентрации газа. Перешедшие в раствор молекулы в свою очередь время от времени ударяются о поверхность жидкости изнутри и вылетают наружу. По мере того как в результате растворения концентрация растворенных молекул будет увеличиваться, скорость их выделения, т. е. число молекул, уходящих из раствора в единицу времени, тоже будет расти, пока, наконец, не сравняется со скоростью растворения. В результате установится состояние равновесия, т. е. жидкость станет насыщенной газом. Если теперь увеличить давление газа, например, в 2 раза, то во столько же раз увеличится и концентрация его молекул над жидкостью, а следовательно, и скорость растворения газа. Равновесие нарушится. Чтобы при новом давлении снова установилось равновесие, концентрация растворенных молекул, очевидно, тоже должна увеличиться вдвое. Таким образом, приходим к выводу, который известен под названием закона Генри: Масса газа, растворяющегося при постоянной температуре в данном объеме жидкости, прямо пропорциональна парциальному давлению газа. Закон Генри может быть выражен уравнением С = kp где С — массовая концентрация газа в насыщенном растворе; р — парциальное давление; k — коэффициент пропорциональности, называемый константой Генри (или коэффициентом Генри). Отметим важное следствие закона Генри. Пусть при данном давлении в некотором объеме жидкости растворяется один объем газа, содержащий т г этого газа. Не меняя температуры, увеличим давление в п раз. При этом, согласно закону Бойля — Мариот-та, объем, занимаемый газом, уменьшится в п раз; следовательно, масса газа, содержащегося в единице объема, возрастет в п раз и составит пт г. С другой стороны, в соответствии с законом Генри масса газа, растворяющегося в определенном объеме жидкости, также возрастет в п раз, т. е. также станет равна пт г. Иначе говоря, в данном объеме жидкости по-прежнему будет растворяться один объем газа. Следовательно, объем газа, растворяющегося при постоянной температуре в данном объеме жидкости, не зависит от его парциального давления. Именно поэтому растворимость газов обычно выражают не в граммах, а в миллилитрах, указывая объем газа, растворяющийся в 100 мл растворителя. Растворимость некоторых газов в воде при 0 и при 20 °С приведена в табл. 10. Если над жидкостью находится смесь нескольких газов, то растворимость каждого из них определяется его парциальным давлением. Это необходимо учитывать при расчете растворимости газов, находящихся в смеси с другими газами. Газы подчиняются закону Генри при не очень высоких давлениях и притом лишь в случае, когда они не вступают в химическое взаимодействие с растворителем. При высоких давлениях, когда поведение всех газов заметно отличается от идеального, отклоне- 77. Пересыщенные растворы. Растворимость большинства ве- Из сказанного следует, что пересыщенные растворы являются неустойчивыми системами, способными к существованию только при отсутствии в системе твердых частиц растворенного вещества. Возможность длительного существования таких растворов объясняется трудностью первоначального возникновения мельчайших «зародышевых» кристалликов, так называемых центров кристаллизации, от которых кристаллизация распространяется на всю массу раствора. 78. Осмос. Как уже говорилось, раствор представляет собой го- Если поместить в цилиндр концентрированный раствор какого-либо вещества, например, сахара, а поверх него осторожно налпгь слой более разбавленного раствора сахара, то вначале сахар и вода будут распределены в объеме раствора неравномерно. Однако через некоторое время молекулы сахара и воды вновь равномерно распределятся по всему объему жидкости. Это происходит потому, что молекулы сахара, беспорядочно двигаясь, проникают как из концентрированного раствора в разбавленный, так и в обратном направлении; но при этом в течение любого промежутка времени из более концентрированного раствора в менее концентрированный переходит больше молекул сахара, чем из разбавленного раствора в концентрированный. Точно так же молекулы воды движутся в различных направлениях, но при этом из разбавленного раствора, более богатого водой, в концентрированный раствор переходит больше молекул воды, чем за то же время переносится в обратном направлении. Таким образом возникает направленное перемещение сахара из концентрированного раствора в разбавленный, а воды — из разбавленного раствора в концентрированный; каждое вещество переносится при этом туда, где его концентрация меньше. Такой самопроизвольный процесс перемещения вещества, приводящий к выравниванию его концентрации, называется диф-ф у з и е й. В ходе диффузии некоторая первоначальная упорядоченность в распределении веществ (высокая концентрация вещества в одной части системы и низкая — в другой) сменяется полной беспорядочностью их распределения. При этом энтропия системы возрастает. Когда концентрация раствора во всем его объеме выравнивается, энтропия достигает максимума и диффузия прекращается. Диффузию можно наблюдать, если палить в стеклянный цилиндр какой-либо окрашенный раствор, например, раствор КМпО/м а сверху него осторожно, чтобы не вызвать перемешивания, добавить воды. Вначале будет заметна резкая граница, но постепенно она будет размываться; через некоторое время растворенное вещество равномерно распределится по всему объему раствора и вся жидкость примет один и тот же цвет. В рассмотренном примере частицы растворителя и растворенного вещества диффундируют в противоположных направлениях. Такой случай называется встречной или двусторонней диффузией. Иначе будет обстоять дело, если между двумя растворами поместить перегородку, через которую растворитель может проходить, а растворенное вещество — не может. Такие перегородки, получившие название полупроницаемых, существуют в природе, а также могут быть получены искусственно. Например, если пропитать глиняный пористый цилиндр раствором медного купороса, а затем погрузить его в раствор гексацианоферрата (II) калия (K4[Fe(CN)e]), то в порах цилиндра осядет гексацианоферрат(П)] Рис. 77. Схема прибера для измерения осмотического давления: / — сеч. уд с водой; 2 —ссс;д с nu.'ij проницаемыми стенками; 3 — трубка,
меди. Обработанный таким образом цилиндр обладает свойствами полупроницаемой перегородки; через его стенки могут проходить молекулы воды, но для молекул растворенного вещества они непроницаемы. Если в такой цилиндр налить раствор какого-либо вещества, например, сахара, и погрузить цилиндр в воду, то выравнивание концентраций будет происходить только вследствие перемещения молекул воды. Последние в большем числе диффундируют в раствор, чем обратно, поэтому объем раствора будет постепенно увеличиваться, а концентрация сахара в нем уменьшаться. Такая односторонняя диффузия через полупроницаемую перегородку называется осмосом. Возьмем сосуд 2 с полупроницаемыми стенками, переходящий вверху в узкую вертикальную трубку 3 (рис. 77). Наполним его раствором сахара и погрузим в сосуд 1 с водой. Вследствие осмоса объем раствора будет постепенно увеличиваться и раствор начнет заполнять вертикальную трубку. По мере поднятия уровня раствора в трубке будет создаваться избыточное давление водяного столба (гидростатическое давление), измеряемое разностью уровней жидкости и противодействующее проникновению молекул воды в раствор. Когда гидростатическое давление достигнет определенной величины, осмос прекратится — наступит равновесие. Гидростатическое давление станет равным тому давлению, которое служит количественной характеристикой осмоса, — осмотическому давлению раствора. Измеряя гидростатическое давление при таком равновесии, можно тем самым определить величину осмотического давления *.
Явления осмоса играют очень важную роль в жизни животных и растительных организмов. Оболочки клеток представляют собой перепонки, легко проницаемые для воды, но почти непроницаемые для веществ, растворенных во внутриклеточной жидкости. Проникая в клетки, вода создает в них избыточное давление, которое слегка растягивает оболочки клеток и поддерживает их в напряженном состоянии. Вот почему такие мягкие органы растения, как травянистые стебли, листья, лепестки цветов, обладают упругостью. Если срезать растение, то вследствие испарения воды объем внутриклеточной жидкости уменьшается, оболочки клеток опадают, становятся дряблыми—растение вянет. Но стоит только начавшее вянуть растение поставить в воду, как начинается осмос, оболочки клеток сноза напрягаются и растение принимает прежний вид. Осмос является также одной из причин, обусловливающих поднятие воды по стеблю растения, питание клеток и многие другие явления. При измерениях осмотического давления различных растворов было установлено, что величина осмотического давления зависит от концентрации раствора и от его температуры, но не зависит ни от природы растворенного вещества, ни от природы растворителя. В 1886 г. Вант-Гофф * показал, что для растворов неэлектролитов невысоких концентраций зависимость осмотического давления от концентрации н температуры раствора выражается уравнением (закон Вант-Гоффа): P = CRT Здесь Р — осмотическое давление раствора, кПа; С — его молярная концентрация (молярность), моль/л; R — универсальная газовая постоянная, 8,314 Дж/(моль-К); Т—абсолютная температура раствора. Молярность раствора С представляет собой отношение количества растворенного вещества п к объему раствора V (л) C = n/V а количество вещества равно его массе ш, деленной на молярную массу М. Отсюда для молярности раствора получаем: С — tn/MV Подставляя это значение С в уравнение Вант-Гоффа, найдем: PV = mRT/M Полученное уравнение по форме напоминает уравнение состояния идеального газа Клапейрона — Менделеева. Это уравнение позволяет по величине осмотического давления раствора определять молярную массу (а значит, и относительную молекулярную массу) растворенного вещества. Пример. Осмотическое давление раствора, в 250 мл которого содержится 3 г сахара, при 12 °С равно 83,14 кПа. Определить относительную молекулярную массу сахара. Подставляя данные в последнее уравнение, получаем 83,14 • 0,25 = 3-8,314 (273 + 12)/Af откуда М = 342 г/моль. Относительная молекулярная масса сахара равна 342.
Если к раствору, отделенному от воды полупроницаемой перегородкой, приложить внешнее давление, равное осмотическому давлению раствора, то, как уже говорилось, осмос прекратится. Если же приложенное внешнее давление проьысиг осмотическое, то диффугпа волы будет преимушсствекяо происходить вз раствора в водную фазу, т. е. в наиравлетш, противоположном направлению перекоса воды прн осмосе. Такое явление получило название обратного осмоса.
Дата добавления: 2014-11-16; Просмотров: 383; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |