КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Характеристика вагонов 81-717(714) 36 страница
В ходе водоподготовки вода освобождается от грубодисперсных и коллоидных примесей и от растворенных веществ. Взвешенные и коллоидные примеси удаляют коагуляцией их добавляемыми к воде солями (обычно АЬ^О^з) с последующей фильтрацией. Для водоумягчения применяют методы осаждения и ионного обмена. Путем осаждения катионы Са2+ и Mg2+ переводят в малорастворимые соединения, выпадающие в осадок. Это достигается либо кипячением воды, либо химическим путем — введением в воду соответствующих реагентов. При кипячении гидрокарбонаты кальция и магния превращаются в СаСОз и Mg(OH)2 Са(НС03)2 = СаС03| + C02f + Н20 Mg(HC03)2 = Mg(OH)^ + 2C02f в результате чего устраняется только карбонатная жесткость. При химическом методе осаждения чаще всего в качестве оса-дителя пользуются известью или содой. При этом в осадок (также в виде СаСОз и Mg(OH)2) переводятся все соли кальция и магния. Для устранения жесткости методом ионного обмена (см. § ПО) или катионирования воду пропускают через слой катионита. При этом катионы Са2+ и Mg2+, находящиеся в воде, обмениваются на катионы Na+, содержащиеся в применяемом катионите. В некоторых случаях требуется удалить из воды не только катионы Са2+ и Mg2+, но и другие катионы и анионы. В таких случаях воду пропускают последовательно через катионит, содержащий в обменной форме водородные ионы (Н-катионит), и анионит, содержащий гидроксид-ионы (ОН-анионит). В итоге вода освобождается как от катионов, так и от анионов солей. Такая обработка воды называется ее обессоливанием. Когда процесс ионного обмена доходит до равновесия, ионит перестает работать — утрачивает способность умягчать воду. Однако любой ионит легко подвергается регенерации. Для этого.через катионит пропускают концентрированный раствор NaCl (Na2S04) или HCl (H2S04). При этом ионы Са2+ и Mg2+ выходят в раствор, а катионит вновь насыщается ионами Na+ или Н+. Для регенерации анионита его обрабатывают раствором щелочи или соды (последний, вследствие гидролиза карбонатного иона, также имеет щелочную реакцию). В результате поглощенные анионы вытесняются в раствор, а анионит вновь насыщается ионами ОН". 213. Стронций (Strontium). Барий (Barium). Стронций и барий встречаются в природе главным образом в виде сульфатов и карбонатов, образуя минералы целестин SrSO.(, стронцианит SrCOs, барит BaSO* и витерит ВаСОз. Содержание стронция и бария в земной коре соответственно равно 0,04 и 0,05 % (масс), т. е. значительно меньше, чем содержание кальция. Металлические стронции и барий очень активны, быстро окисляются на воздухе, довольно энергично взаимодействуют с водой (особенно барий) и непосредственно соединяются со многими элементами. Оксиды стронция и бария SrO и ВаО сходны с оксидом кальция. Оба металла образуют также пероксиды. Пероксид бария Ва02 получается при нагревании оксида бария иа воздухе примерно до 500°С. При высокой температуре она снова разлагается на оксид и кислород. Пероксид бария, как и пероксид натрия, используют для беления различных материалов. Гидроксиды стронция и бария Sr(OH)2 и Ва(ОН)2 представляют собой сильные основания, лучше растворимые в воде, чем гидроксид кальция: один литр воды при 20 °С растворяет 8 г гидроксида стронция и 38 г гидроксида бария. Насыщенный раствор гидроксида бария называется баритовой водой и часто применяется в качестве реактива. Соли стронция и бария имеют сходство с солями кальция. Карбонаты и сульфаты SrC03, ВаСОз, SrS04 и BaS04 обладают очень малой растворимостью в воде и выпадают из раствора в виде осадков, если ионы стронция и бария встречаются с ионами СО*~ илн SO4". Этим пользуются при анализе для отделения стронция и бария от других металлов. Характерным отличием всех трех металлов друг от друга может служить окраска, сообщаемая их летучими солями несветящему пламени. Соли кальция окрашивают пламя в кирпично-красный цвет, соли стронция — в карминово-красный, а соли бария — в желтовато-зеленый.
ПОБОЧНАЯ ПОДГРУППА ВТОРОЙ ГРУППЫ
Элементы этой подгруппы — цинк, кадмий и ртуть — характеризуются наличием двух электронов в наружном слое атома и восемнадцати в предыдущем. Строение двух наружных электронных оболочек их атомов можно отразить формулой (п— l)s2(n—> 1)рс' (n—l)dl0ns2. В табл. 34 приведены некоторые свойства этих металлов. Восстановительные свойства элементов подгруппы цинка выражены значительно слабее, чем у элементов главной подгруппы. Это объясняется меньшими размерами атомов и, соответственно, более высокими энергиями ионизации этих элементов по сравнению с соответствующими элементами главной подгруппы (ср. данные табл. 33 и 34). У атомов цинка, кадмия и ртути, как и у атомов элементов подгруппы меди, d-подуровень второго снаружи электронного слоя целиком заполнен. Однако у элементов подгруппы цинка этот подуровень уже вполне стабилен и удаление из него электронов требует очень большой затраты энергии. Поэтому рассматриваемые элементы проявляют в своих соединениях степень окисленности +2. Ртуть, кроме того, образует соединения, в которых ее степень окисленности равна +1; но, как будет показано ниже (см. § 216), и в этих соединениях ртуть следует считать двухвалентной. Характерной особенностью элементов подгруппы цинка, сближающей их с элементами подгруппы меди, является их склонность к комплексообразованию. 214. Цинк (Zincum). Главные природные соединения цинка, из которых его добывают, ■— минералы галмей ZnC03 и цинковая об* манка ZnS, Общее содержание цинка в земной коре составляет приблизительно 0,01 % (масс). Большинство цинковых руд содержат небольшие количества цинка, поэтому их предварительно обогащают, получая цинковый концентрат. Последний подвергают обжигу; при этом сульфид цинка превращается в оксид: 2ZnS + 302 = 2ZnO + 2S02f Обжиг ведется в многоподовых или в шахтных печах. В последнее время при обжиге цинковых руд широко применяется обжиг в «кипящем слое». Метод обработки мелко раздробленных твердых материалов в так называемом «кипящем слое» получил широкое распространение в различных отраслях промышленности. Этот метод заключается в следующем. Через слой порошкообразного материала, помещенного на решетке, продувают снизу воздух (или какой-либо газ) с такой скоростью, что его струи пронизывают и интенсивно перемешивают материал, приводя его как бы в «кипящее» состояние. Такое состояние твердого материала часто называют «псевдоожижеппым», тан как кипеть могут только вещества, находящиеся в жидком состоянии. Благодаря тесному соприкосновению твердого материала с газом химические реакции в «кипящем слое» протекают с большой скоростью. Применение обжига в «кипящем слое» дает повышение производительности обжиговых печей в 3—4 раза при более полном извлечении цинка из концентрата. Метод весьма эффективен при обжиге сульфидных руд и концентратов, сублимации сравнительно летучих металлов, прокаливании, охлаждении и сушке различных веществ. Из обожженного концентрата цинк извлекают, восстанавливая его коксом и отгоняя образующиеся пары цинка. Другой метод восстановления цинка заключается в электролитическом выделении его из сульфата. Последний получается обработкой обожженных концентратов серной кислотой. Цинк — голубовато-серебристый металл. При комнатной температуре он довольно хрупок, но при 100—150 °С он хорошо гнется и прокатывается в листы. При нагревании выше 200 °С цинк становится очень хрупким. На воздухе он покрывается тонким слоем оксида или основного карбоната, предохраняющим его от дальнейшего окисления. Вода почти не действует на цинк, хотя он и стоит в ряду напряжений значительно раньше водорода. Это объясняется тем, что образующийся па поверхности цинка при взаимодействии его с водой гидроксид практически нерастворим и препятствует дальнейшему течению реакции. В разбавленных же кислотах цинк легко растворяется с образованием соответствующих солей. Кроме того, цинк, подобно бериллию и другим металлам, образующим амфотерные гидроксиды, растворяется в щелочах. Если сильно нагреть цинк в атмосфере воздуха, то пары его воспламеняются и сгорают зеленовато-белым пламенем, образуя ZnO. Применение цинка очень разнообразно. Значительная часть его идет для нанесения покрытий на железные и стальные изделия, предназначенные для работы в атмосферных условиях или в воде. При этом цинковые покрытия в течение многих лет хорошо защищают основной металл от коррозии. Однако в условиях высокой влажности воздуха при значительных колебаниях температуры, а также в морской воде цинковые покрытия неэффективны. Широкое промышленное использование имеют сплавы цинка с алюминием, медью и магнием. С медью цинк образует важную группу сплавов — латуни (см. § 200). Значительное количество цинка расходуется для изготовления гальванических элементов. Марганцово-цин новый элемент. Из всех применяемых в настоящее время гальванических элементов маргаицово-цинковые наиболее распространены. Имеется несколько разновидностей элементов этой системы, но в основе действия их всех лежит окислительно-восстановительная реакция между цинком и диоксидом марганца. В элементах этой системы один электрод цинковый, другой состоит из Мп02. Оба электрода находятся в растворе «лорида аммония. При работе элемента цинк окисляется; 2Zn = 2Zn2+ -f 4е- Часть образующихся ионов цинка связывается молекулами аммиака в комплексный ион: Zn2+ -f 4NH3 = [Zn(NH3)4l2+ Молекулы аммиака образуются в растворе вследствие гидролиза иона аммония: 4NHt -f 4Н20 4NH3 + 4Н30+ Электроны, получающиеся прп окислении цинка, по внешней цепи переходят к диоксиду марганца, который при этом восстанавливается. В результате восстановления Мп02 получается смесь нескольких продуктов. В наибольшем количестве получается соединение МпООН, в котором степень окисленности марганца равна +3: 4Мп02 + 4Н+ + 4г~ = 4МпООН Таким образом, цинковый электрод элемента является анодом и заряжен отрицательно, а электрод из Мп02 служит катодом п заряжен положительно. Имеющиеся в растворе ионы NH* и СГ при работе элемента движутся в направлениях, обусловленных процессами, протекающими иа электродах. Поскольку у цинкового электрода катионы цинка выходят в раствор, а у катода раствор все время обедняется катионами Н+, то в создающемся электрическом поле ионы NH"1", движутся при работе элемента к катоду, а ионы С1~ к аноду. Таким образом, раствор во всех его частях остается электронейтральным. Если сложить последние четыре уравнения, отвечающие отдельным протекающим при работе элемента процессам, то получится суммарное уравнение окислительно-восстановительной реакции, идущей в элементе: 2Zn + 4Mn02 + 4NHt = Zn2+ + [Zn(NH3)4]2+ + 4MnOOH Марганцово-цинковые элементы не содержат в себе раствора в обычном понимании этого слова. Необходимый для их работы раствор NH4C1 в одних конструкциях имеет консистенцию пасты, в других им пропитан пористый картон, помещаемый между электродами. Поэтому эти гальванические элементы носят условное название сухих элементов. Марганцово-цинковые элементы широко применяются в качестве источников электропитания установок связи, различных измерительных приборов, карманных фонарей. Воздушно-цинковый элемент. Здесь отрицательным электродом является цинк, а активным веществом положительного электрода служит кислород воздуха (поры электрода, изготовляемого из смеси активного угля с графитом, заполнены воздухом). Кислород диффундирует к поверхности раздела электрод — раствор. В качестве электролита применяются растворы NaOH или NH4C1. При работе такого элемента в нем протекает окислительно-восстановительная реакция, которая в случае щелочного электролита выражается уравнением: Zn + у 02 -f 2NaOH = Na2Zn02 + Н20 Механические и коррозионные свойства цинка зависят от присутствия в нем небольших количеств примесей других металлов. Например, примесь железа повышает хрупкость цинка и его сплавов и затрудняет их обработку, а также резко увеличивает скорость коррозии цинка в кислотах. Поэтому высококачественные сплавы цинка содержат очень малые количества примесей других металлов. Например, примесь свинца не должна превышать 0,01 %, а железа — 0,1 %. Оксид цинка ZnO — рыхлый белый порошок, желтеющий при нагревании, но при охлаждении снова становящийся белым. Оксид цинка применяется для изготовления белой масляной краски (цинковые белила), в медицине и косметике (для приготовления различных мазей); значительная часть получаемого оксида цинка используется в качестве наполнителя резины. Гидроксид цинка Zn(OH)2 выпадает в виде белого осадка при действии щелочей на растворы солей цинка: Zn2+ + 20Н" = Zn(OH)2| Осадок легко растворяется в кислотах с образованием солей цинка и в избытке щелочей с образованием цинкатов. Таким образом, гидроксид цинка — амфотерное соединение. Так, с NaOH протекает реакция: Zn(OH)2 + 2NaOH = Na2Zn02 + 2Н20 Как и в случае бериллатов (см. § 209), при образовании цинкатов происходит не только замещение водорода в Zn(OH)2 на металл, но и присоединение гидроксид-ионов. В частности, в твердом состоянии выделены гидроксоцинкаты, отвечающие формулам Na2[Zn(OH)4], Ba2[Zn(OH)6]. Растворение металлического цинка в щелочах тоже сопровождается образованием гидроксоцинкатов, например: Zn + 2NaOH + 2Н20 = Na2[Zn(OH)4] + H2f Гидроксид цинка растворяется также в водном растворе аммиака. При этом образуются комплексные ионы [Zn(NH3)4p+: Zn(OH)2 + 4NH3 = [Zn(NH3)4]2+ + 20H" Zn(OH)2 — слабый электролит. Поэтому все соли цинка, в том числе и цинкаты, в водной среде гидролизуются. Сульфат цинка ZnS04. Из водного раствора выделяется в виде кристаллогидрата состава ZnS04-7H20 и в таком виде называется цинковым купоросом. Применяется при крашении и ситцепечатании, при гальваническом цинковании (в качестве главного компонента электролита), в медицине, а также служит исходным веществом для получения других соединений цинка. Хлорид цинка ZnCl2. Эту соль трудно получить в безводном состоянии. Обычно она содержит около 5 % воды и основного хлорида. Раствор ZnCl2 применяется для травления металлов; при паянии он способствует удалению оксидов с поверхности металла в момент пайки. Для этой же цели при пайке и сварке металлов применяется тетрахлорципкат аммония (NH<t)2 [ZnCU] (или ZnCi2-2NH4Cl). Сульфид цинка ZnS. Это — один из немногих сульфидов, имеющих белый цвет. Сульфид цинка получается при действии сульфидов щелочных металлов или аммония на соли цинка: Zn2+ + S2- = ZnSJ, Сульфид цинка, а также оксид цинка входят в группу веществ, обладающих способностью люминесцировать — испускать холодное свечение в результате действия па них лучистой энергии или электронов. Явление люминесценции широко используется в науке и технике. Так, большое значение приобрел люминесцентный анализ, люминесцентные лампы применяются для освещения, люминесцентные экраны — важнейшая часть электронно-лучевых приборов. Люминесцентный анализ основан на различном характере свечения разных веществ. Он дает возможность устанавливать присутствие очень малых количеств веществ в смесях, а также обнаруживать различия между предметами, которые в видимом свете представляются одинаковыми. С его помощью сортируют стекла, семена, обнаруживают микродефекты в металлических изделиях. Он применяется при поисках битумных и нефтяных месторождений, урановых руд. Люминесцентный анализ играет важную роль в судебной медицине и криминалистике, позволяя устанавливать природу различных пятен, обнаруживать фальсификацию документов и тайнопись. Чувствительность этого вида анализа очень велика. Кроме того, для его проведения не нужно разрушать анализируемое тело, что в некоторых случаях очень важно. В люминесцентных лампах дневного света находящиеся в них пары ртути при прохождении электрического тока испускают ультрафиолетовое излучение, которое вызывает свечение веществ, покрывающих тонким слоем внутреннюю поверхность лампы. Эти вещества — люминофоры — можно подобрать так, чтобы их излучение по своему спектральному составу приближалось к дневному свету. Огромное значение имеет применение люминофоров в различных элек-Тронно-лучевых приборах: катодных осциллографах, телевизорах и других. Экраны телевизора обычно изготовляют из сульфида цинка. 215. Кадмий (Cadmium). По своим свойствам кадмий сходен с цинком и обычно содержится как примесь в цинковых рудах. По распространенности в природе он значительно уступает цинку; содержание кадмия в земной коре составляет всего около Ю-5 % (масс). Получают кадмий из отходов цинкового производства путем обработки последних серной кислотой с последующим выделением металлического кадмия цинком: CdS04 + Zn = ZnS04 + Cd Для очистки полученный продукт растворяют в разбавленной серной кислоте и подвергают электролизу. Кадмий представляет собой серебристо-белый, мягкий, ковкий, тягучий металл. В ряду напряжений он стоит дальше цинка, но спереди водорода и вытесняет последний из кислот. Поскольку Cd(OH)2 — слабый электролит, то соли кадмия гидролизуются и их растворы имеют кислую реакцию. Кадмий сильно поглощает медленные нейтроны. Поэтому кадмиевые стержни применяют в ядерных реакторах для регулирования скорости цепной реакции. Кадмий используется в щелочных аккумуляторах (см. § 244), входит как компонент в некоторые сплавы. Например, сплавы меди, содержащие около 1 % Cd (кадмиевая бронза), служат для изготовления телеграфных, телефонных, троллейбусных проводов, так как эти сплавы обладают большей прочностью и износостойкостью, чем медь. Ряд легкоплавких сплавов, например, применяющиеся в автоматических огнетушителях, содержат кадмий. Несмотря на сравнительно высокую стоимость, кадмий применяется для кадмирования стальных изделий, так как он несет на своей поверхности оксидную пленку, обладающую защитным действием. В морской воде и в некоторых других условиях кадмирование более эффективно, чем цинкование. При сильном накаливании кадмий сгорает, превращаясь в бурый оксид кадмия CdO. Гидроксид кадмия Cd(OH)2 в отличие от гидроксида цинка не обладает заметно выраженными кислотными свойствами и практически не растворяется в щелочах. Из солей кадмия отметим сульфид кадмия CdS, выпадающий б виде желтого осадка из растворов солей кадмия при действии сероводорода. Сульфид кадмия применяется для изготовления желтой краски и цветных стекол. Все растворимые в воде и в разбавленных кислотах соединения кадмия ядовиты. Весьма опасно также вдыхание воздуха, содержащего «дым» оксида кадмия. 216. Ртуть (Hydrargyrum). Ртуть мало распространена в природе; содержание ее1 в земной коре составляет всего около Ю-6 % (масс). Изредка ртуть встречается в самородном виде, вкрапленная в горные породы; но главным образом она находится в природе в виде ярко-красного сульфида ртути HgS, или киновари. Этот минерал применяется для изготовления красной краски. Из киновари металлическую ртуть получают обжигом руды. При этом ртуть выделяется в виде паров и конденсируется в охлаждаемом приемнике: HgS + 02 = Hg + so2 Ртуть — единственный металл, находящийся при комнатной температуре в жидком состоянии. Она широко используется в химической промышленности: в качестве катода при электролитическом производстве гидроксида натрия и хлора, как катализатор при получении многих органических соединений и при растворении урановых блоков (в атомной энергетике). Ее применяют для изготовления ламп дневного света (см. § 214), кварцевых ламп, манометров и термометров. В горном деле ртутью пользуются для отделения золота от неметаллических примесей. Ртуть обладает способностью растворять в себе многие металлы, образуя с ними частью жидкие, частью твердые сплавы, называемые амальгамами. При этом нередко получаются химические соединения ртути с металлами. Амальгама натрия широко применяется в качестве восстановителя. Амальгамы олова и серебра применяются при пломбировании зубов. Особенно легко образуется амальгама золота, вследствие чего золотые изделия не должны соприкасаться с ртутью. Железо не образует амальгамы, поэтому ртуть можно перевозить в стальных сосудах. Ртуть обычно содержит в виде примеси другие металлы. Большую часть примесей можно удалить, взбалтывая ртуть с раствором нитрата ртути (II); при этом металлы, стоящие в ряду напряжений до ртути (а к ним относится большинство металлов), переходят в раствор, вытесняя из него эквивалентное количество ртути. Полная очистка ртути достигается путем ее многократной перегонки, лучше всего под уменьшенным давлением. Пары ртути очень ядовиты и могут вызвать тяжелое отравление. Для этого достаточно даже того ничтожного количества паров, которое образуется при комнатной температуре. Поэтому при всех работах с ртутью необходимо быть очень осторожным. Не следует держать открытыми сосуды с ртутью, все работы с ией надо проводить на эмалированных или железных подносах. Очень опасна ртуть, пролитая на пол. При падении она разбивается иа множество мелких капель, которые попадают в щели и могут в течение длительного времени отравлять атмосферу. Поэтому, если ртуть пролилась иа пол, необходимо немедленно и тщательно собрать ее с помощью пылесоса или пипетки с грушей. Для удаления ртути можно пользоваться также специальными реактивами (демеркуризаторами). В качестве последних применяют порошок серы, 20 % раствор FeCl3, эмульсию из минерального масла и воды, содержащую порошкообразные серу и иод, 10 % раствор КМп04, подкисленный соляной кислотой. Из металлов подгруппы цинка ртуть наименее активна вследствие высокой энергии ионизации ее атомов (см. табл. 34). Соляная и разбавленная серная кислота, а также щелочи не действуют на ртуть. Легко растворяется ртуть в азотной кислоте. Концентрированная серная кислота растворяет ртуть при нагревании. На воздухе ртуть при комнатной температуре не окисляется. При продолжительном нагревании до температуры, близкой к температуре кипения, ртуть соединяется с кислородом воздуха, образуя красный оксид ртути(\\) (или окись ртути) HgO, который при более сильном нагревании снова распадается на ртуть и кислород. В этом соединении степень окисленности ртути равна +2. Известен и другой оксид ртути черного цвета, в котором степень окисленности ртути равна +1, — оксид ртути(\) (или закись ртути) Hg20, Во всех соединениях ртути(I) атомы ртути связаны между собой, образуя двухвалентные группы —Hg2— (—Hg—Hg—). Следовательно, ртуть двухвалентна и в этих соединениях, но одна единица валентности каждого атома ртути затрачивается здесь на связь с другим атомом ртути. Эта связь сохраняется и в растворах солей ртути (I), которые содержат ионы ртути. Таким образом, состав солей ртути (I), содержащих одновалентный кислотный остаток R, следует изображать не эмпирической формулой HgR, а формулой Hg2R2 (например, Hg2Cl2). Одна из особенностей ртути заключается в том, что для нее неизвестны гидроксиды. В тех случаях, когда можно было бы ожидать их образования, получаются безводные оксиды. Так, при действии щелочей на растворы солей ртути(I) получается буровато-черный осадок оксида ртути(I): Hg|+ + 20Н- = Hg20| + Н20 Точно так же из растворов солей ртути(II) щелочи осаждают оксид ртути(II): Hg2+ + 20Н" = HgO| + Н20 Образующийся осадок имеет желтый цвет, но при нагревании переходит в красную модификацию оксида ртути(II). Нитрат ртути (I) Hg2(N03)2— одна из немногих растворимых солей ртути(I). Получается при действии разбавленной холодной азотной кислоты на избыток ртути: 6Hg + 8HNO3 = 3Hg2(N03)2 + 2NOf + 4Н20 Хлорид ртути(\) Hg2Cl2, или каломель, представляет собой белый, нерастворимый в воде порошок. Его приготовляют, нагревая смесь HgCl2 с ртутью: HgCl2 + Hg = Hg2Cl2 Каломель может быть получена также действием соляной кислоты или хлорида натрия на растворимые соли ртути (I): Hg2/ + 2СГ = Hg2ci2| Нитрат ртути(1\) Hg(N03)2 получается при действии избытка горячей азотной кислоты на ртуть. Хорошо растворим в воде. В разбавленных растворах при отсутствии свободной кислоты гидролизуется с образованием белого осадка основной соли HgO- Hg(N03)2. При нагревании с большим количеством воды основная соль также разлагается, в результате чего получается оксид ртути(И). Хлорид ртути(\\), или сулема, HgCl2 может быть получен непосредственным взаимодействием ртути с хлором. Это бесцветное вещество, сравнительно мало растворимое в холодной воде (6,6 г в 100 г воды при 20 °С). Однако с повышением температуры растворимость сулемы сильно возрастает, достигая при 100°С 58 г в 100 г воды. Из раствора HgCl2 кристализуется в виде длинных блестящих призм. Обычно эту соль получают, нагревая сульфат ртутн(П) с хлоридом натрия: HgS04 + 2NaCl = Na2S04 + HgCl2 Образующаяся сулема сублимируется; от последнего слова она и получила свое название. Водный раствор сулемы практически не проводит электрического тока. Таким образом, сулема—одна из немногих солей, которые почти не диссоциируют в водном растворе на ионы. Как указывалось на стр. 147, это объясняется сильной поляризующей способностью нона Hg2+. Сулема, как и все растворимые соли ртути, — сильный яд. Она используется для протравливания семян, дубления кожи, получения других соединений ртути, при крашении тканей, как катализатор в органическом синтезе и как дезинфицирующее средство (стр. 352). Иодид ртути(\\) Hgl2 выпадает в виде красизого оранжево-красного осадка при действии раствора иодида калия на соли ртути(П): Hg2+ + 2Г = Hgl2l В избытке иодида калия соль легко растворяется, образуя бесцветный раствор комплексной соля K2[HgIJ: Hgl2 + 2KI = K2fHgI4] Сульфид pTij7v(\\) HgS встречается в природе (см. выше). Искусственно он может быть получен в виде вещества черного цвета прямым соединением серы со ртутью или действием сероводорода на растворы солей ртути(II). При нагревании без доступа воздуха черный сульфид ртутн(П) превращается в красное кристаллическое видоизменение — киноварь.
Глава ТРЕТЬИ ГРУППА XX ПЕРИОДИЧЕСКОЙ СИСТЕМЫ
Третья группа периодической системы охватывает очень большое число химических элементов, так как в состав ее, кроме элементов главной и побочной подгрупп, входят элементы с порядковыми номерами 58—71 (лантаноиды) и с порядковыми номерами 90—103 (актиноиды). Мы рассмотрим лантаноиды и актиноиды вместе с элементами побочной подгруппы. ГЛАВНАЯ ПОДГРУППА ТРЕТЬЕЙ ГРУППЫ Элементы главной подгруппы третьей группы — бор, алюминий, галлий, индий и таллий—характеризуются наличием трех электронов в наружном электронном слое атома. Второй снаружи 217. Бор
электронный слой атома бора содержит два электрона, атома алюминия— восемь, галлия, индня и таллия — по восемнадцать электронов. Важнейшие свойства этих элементов приведены в табл. 35. Таблица 35. Некоторые свойства бора, алюминия и его аналогов
Дата добавления: 2014-11-16; Просмотров: 474; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |