Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

II. Введение в математический анализ




Читайте также:
  1. A Введение 1 страница
  2. A Введение 2 страница
  3. Fвведение систем предварительных заказов.
  4. I Введение
  5. I. Введение
  6. I. Введение
  7. I. ВВЕДЕНИЕ В ИСТОРИЮ ИЛИ ОСНОВНЫЕ ПРОБЛЕМЫ ИСТОРИЧЕСКОЙ НАУКИ
  8. II. ВВЕДЕНИЕ
  9. IV. Введение системных антидотов
  10. V2: Тема 1.1 Введение в анатомию.
  11. ВВЕДЕНИЕ

I. Элементы линейной алгебры и аналитической геометрии.

 

1. Трехмерное пространство R3. Векторы. Линейные операции над векторами. Линейно-независимые системы векторов. Базис.

2. Скалярное произведение в R3 и его свойства. Длина вектора. Угол между двумя векторами. Ортогональный базис. Разложение вектора по базису.

3. Определители второго и третьего порядков, их свойства. Алге­браические дополнения и миноры. Определители n-го порядка. Вектор­ное произведение и его свойства. Смешанное произведение.

4. Уравнение плоскости в R3 (векторная и координатная формы). Уравнения прямой в R2 и R3 (векторная и координатная формы).

5. Системы двух и трех линейных уравнений с двумя и тремя не­известными. Правило Крамера. Системы т линейных уравнений с п неизвестными. Метод Гаусса-Жордана.

6. Матрицы. Действия над матрицами, обратная матрица. Матрич­ная запись системы линейных уравнений и ее решения. Пространство Rn. Линейная зависимость и независимость векторов в Rn. Ранг матри­цы, его вычисление. Исследование системы линейных уравнений. Теоре­ма Кронекера-Капелли.

7. Понятие о линейном операторе как о линейном преобразовании пространства. Линейные операторы и их матрицы в R2 и R3. Собствен­ные векторы и собственные значения линейных операторов.

8. Квадратичные формы. Приведенные к каноническому виду. Геометрические приложения квадратичных форм в пространствах R2 и R3.

9. Общее уравнение кривых второго порядка. Канонические формы уравнений эллипса, гиперболы и параболы. Геометрические свойства эллипса, гиперболы и параболы.

10. Поверхности второго порядка, Канонические формы уравнений. Исследование поверхностей второго порядка методом сечений.

 

 

11. Элементы математической логики. Необходимость и достаточ­ность. Символика математической логики и ее использование.

12. Множество вещественных чисел. Числовые последовательности. Предел. Верхние и нижние пределы множеств. Существование предела монотонной ограниченной последовательности. Число е. Натуральные логарифмы. Предел функции в точке. Предел функции в бесконечности. Свойства функций, имеющих предел.

13. Непрерывность функции. Непрерывность основных элементар­ных функций.

14. Бесконечно малые функции и их свойства.

15. Бесконечно большие функции и их свойства. Связь между бесконечно большими функциями и бесконечно малыми.

16. Сравнение бесконечно малых. Эквивалентные бесконечно ма­лые. Их использование при вычислении пределов.

17. Свойства непрерывных в точке функций. Непрерывность сум­мы, произведения и частного. Предел и непрерывность сложной функ­ции.

18. Односторонние пределы. Односторонняя непрерывность. Точки разрыва функции и их классификация.

19. Свойства функций, непрерывных на отрезке: ограниченность, существование наибольшего и наименьшего значений, существование промежуточных значений.





Дата добавления: 2014-11-16; Просмотров: 287; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:



studopedia.su - Студопедия (2013 - 2018) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление ip: 54.163.42.154
Генерация страницы за: 0.001 сек.