Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные правила дифференцирования




Задачи, приводящие к понятию производной. Определение производной и ее геометрический смысл.

1. ncp.=DS/Dt, n=lim(DS/Dt), где Dt®0

2. pcp.=Dm/Dl, pT=lim(Dm/Dl), где Dl®0

Dy=f(x+Dx)-f(x), y=f(x)

lim(Dy/Dx)=lim((f(x+Dx)-f(x))/Dx)

Dx®0 Dx®0

Смысл производной - это скорость изменения ф-ции при изменении аргумента.

y=f(x+Dx)-f(x), y=f(x). производной в точке а называется предел отношения приращения ф-ции к приращению аргумента:

lim(Dy/Dx)=lim((f(x+Dx)-f(x))/Dx)=dy/dx

Dx®0 Dx®0

Вычисление производной: lim(Dy/Dx)=y` Dx®0

1) если y=x, Dy=Dx, y`=x=lim(Dy/Dx)=1.

2) если y=x2, Dy=(x+Dx)2-x2=x2+2xDx+Dx2-x2=Dx(2x-Dx),

(x2)`=lim((Dx(2x+Dx))/Dx)=lim(2x+Dx)=2x

x®0 Dx®0

Геометрический смысл производной.

KN=Dy, MK=Dx

DMNK/tg2=Dy/Dx

вычислим предел левой и правой части:

limtga=lim(Dy/Dx) Dx®0

tga0=y`

a®a0

При Dx®0 секущая MN®занять положение касательной в точке M(tga0=y`, a®a0)

Геометрический смысл производной заключается в том, что есть tg угла наклона касательной, проведенной в точке x0.

Теорема: Если f(x) и g(x) дифферен. в точке х, то:

Теорема о произв. сложной функции:

Если y(x)=f(u(x)) и существует f’(u) и u’(x), то существует y’(x)=f(u(x))u’(x).

Теорема о произв. обратной функции.

Таблица производных:

41. Дифференцирование сложных ф-ций:

Производная сложной ф-ции = произведению производной ф-ции по промежуточному аргументу и производной самого промежуточного аргумента по независимой переменной.

y`=f(x)*U`,или yx`=yU`*Ux`, или dy/dx=dy/dU=dU/dx

Например:

 




Поделиться с друзьями:


Дата добавления: 2014-11-16; Просмотров: 604; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.