Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод трапецій




Суть методу трапецій полягає в тому, що інтеграл обчислюється таким чином: відрізок інтегрування [а, b] поділяється на N рівних відрізків, всередині яких підінтегральна крива f(x) замінюється кусково-лінійною функцією j (х), отриманою стягуванням ординат N відрізків [ xi-1, xi ] хордами.

Інтеграл знаходиться як сума площ Si прямокутних трапецій (pис.7.4 а,б).

Рисунок 7.4– Геометрична інтерпретація метода трапецій

Площа кожної такої трапеції визначається як

.

Відповідно на всьому відрізку інтегрування [а, b] площа складної фігури, яка визначається як сума площин всіх таких трапецій, визначається формулою:

.

Оскільки в даної формулі під знаком суми величини зустрічаються двічі, тому її можна переписати у вигляді:

(7.3)

Похибка обчислення інтеграла за формулою трапеції визначається:

(7.4)

Схема алгоритму обчислення інтегралу методом трапецій показано на рис. 7.5.

Рисунок 7.5 – Схема алгоритму методу трапецій




Поделиться с друзьями:


Дата добавления: 2014-11-08; Просмотров: 527; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.