КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Економічні задачі
У результаті перетину поверхонь другого порядку площиною утворюється конічний переріз. У граничному випадку поверхня другого порядку може являти собою точку або порожню множину. Лінійна функція y = kx + b та її графік застосовуються для опису економічних залежностей між прямо пропорційними змінними.
Початкова врожайність деякої зернової культури на малопридатних для землеробства землях становила 12 ц/га. Завдяки застосуванню інтенсивної технології передбачається щорічне її зростання на 2 ц/га. Записати закон зміни врожайності у як функції часу х. Обчислити її значення для п’ятого року застосування зазначеної технології (х = 5). · Якщо х — час у роках, то виразом Знайдений результат унаочнюється графіком. (Рис. 3.66) ·
Рівняння виду може розглядатися як математична модель лінійної економічної залежності між змінними х та у, коли відомі дві різні пари (х 0; у 0), (х 1; у 1) значень цих змінних.
Повні витрати на виготовлення 5 умовних одиниць деякої продукції становлять 5,5 млн грн., а для виготовлення 10 таких одиниць — 9 млн грн. Знайти функцію витрат виробництва, вважаючи її лінійною. Визначити витрати на виготовлення 7 умовних одиниць продукції. · За умовою задачі маємо дві пари чисел, які можемо тлумачити як координати двох точок (5; 5,5) і (10; 9) шуканої прямої. Згідно із записаним щойно рівнянням прямої, яка проходить через дві задані точки, дістаємо: , або . Отже, . Підставивши в останню рівність значення х = 7, обчислимо шукані витрати: (млн грн.). Повні витрати з перевезення вантажу залізничним і автомобільним транспортом подаються відповідно залежностями: і , де х, км, — відстань, на яку здійснюється перевезення; у — транспортні витрати. Знаючи, що 0 < a1 < a2 i 0 < b2 < b1, встановити, яким видом транспорту і на яку відстань дешевше перевозити вантаж. Рис. 3.67 · За умовою побудуємо прямі І і ІІ та знайдемо координати точок їх перетину як розв’язок системи рівнянь: Отже, точка А перетину прямих І і ІІ має координати . Це означає, що при повні витрати з перевезення вантажу обома видами транспорту однакові й становлять (грн.). Розглядаючи графік рис. 3.68, доходимо висновку, що коли (км), дешевшими є автомобільні перевезення, а коли (км) — залізничні. Бригада, що складається з х робітників-ремонтників і бригадира, виконуючи певне замовлення, щомісяця одержувала загалом 3000 грн. заробітної плати. Подати заробітну плату члена бригади виразом, коли відомо, що вона в усіх однакова і 50 грн. з належної кожному суми становлять різні відрахування. · Заробітна плата у подається так: , а після відрахувань — у вигляді відповідної різниці: . Це рівняння гіперболи, горизонтальною асимптотою якої є пряма , а вертикальною — пряма . Рис. 3.68. · Лінії, які задані рівняннями називаються лініями гіперболічного типу. Такі лінії часто застосовуються в багатьох галузях знань. Наприклад, у фізиці такого виду графіки відповідають закону всесвітнього тяжіння Ньютона , закону Ома і т. ін. Одне із застосувань таких ліній в економіці пов’язане з ім’ям італійського економіста Парето, який сформулював закон розподілу прибутків у капіталістичному суспільстві.
Закон Парето. Число у осіб, котрі мають прибуток не менш як х, можна визначити за формулою: Зауваження. Закон Парето достатньо точно описує розподіл великих прибутків, але не справджується для низьких. Нехай у деякому капіталістичному суспільстві розподіл прибутків серед особливо багатих осіб визначається так: (1) де у — число осіб, прибуток яких не менший від х. Визначити: 1) число осіб, прибуток яких не менший від 105 дол.; 2) найменший прибуток серед 100 особливо багатих осіб. · 1. За формулою (1) і умовою задачі маємо: Отже, у даному суспільстві 300 осіб мають прибуток не менш як 105 дол. 2. Згідно з формулою (1) знаходимо . Якщо у = 100, або Таким чином, найменший прибуток серед 100 особливо багатих осіб становить 173 200 дол. · Вправи для самостійного розв’язування
Дата добавления: 2014-11-20; Просмотров: 870; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |