Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Работа в термодинамике




Внутренняя энергия газа при переходе его из одного состояния в другое изменяется. Рассмотрим, как это изменение связано с работой внешних сил над газом или газа против внешних сил. Для этого рассмотрим цилиндр с подвижным поршнем. На произвольном малом участке при движении поршня изменяется объем газа и совершается работа, равная произведению силы, действующей на поршень со стороны газа, находящегося внутри цилиндра, на перемещение поршня под действием этой силы: Δ Аi = Fi Δ x. Работа положительна, если направление силы и перемещения совпадают и отрицательна, если они противоположны. Из этого следует, что при сжатии газа положительна работа внешних сил, а при расширении положительную работу совершает газ.Для вычисления работы, совершаемой газом при изменении его объема, в определяющем уравнении работы можно заменить силу, действующую на поршень в цилиндре, через произведение давления газа на площадь поршня. Получаем, что работа в термодинамике определяется произведением давления газа на изменение его объема:

Δ Ai = piS Δ x = pi Δ V.

Термодинамическая работа — способ передачи энергии, связанный с изменением внешних параметров системы.

Механическая работа определяется как:

δA =(Fdr −→), где F → — сила, а dr −→ — элементарное (бесконечно малое) перемещение.Элементарная работа термодинамической системы над внешней средой может быть вычислена так:

δA =(Fdr −→)= P (ds −→ dr −→)= PdV, где ds −→ — нормаль элементарной (бесконечно малой) площадки, P — давление и dV — бесконечно малое приращение объёма. Работа в термодинамическом процессе 1→2, таким образом, выражается так: A =∫12 PdV.

Величина работы зависит от пути, по которому термодинамическая система переходит из состояния 1 в состояние 2, и не является функцией состояния системы. Это легко доказать, если учесть, что геометрический смысл определённого интеграла — площадь под графиком кривой. Так как работа определяется через интеграл, то в зависимости от пути процесса площадь под кривой, а значит, и работа, будет различна. Такие величины называют функциями процесса.Несмотря на то, что до сих пор и в физической химии используется обозначение работы A, в соответствии с рекомендациями ИЮПАК работу в химической термодинамике следует обозначать как W. Впрочем, авторы могут использовать какие угодно обозначения, если только дадут им расшифровку.

Внутренняя энергия термодинамической системы может изменяться двумя способами: посредством совершения работы над системой и посредством теплообмена с окружающей средой. Энергия, которую получает или теряет тело в процессе теплообмена с окружающей средой, называется коли́чеством теплоты́ или просто теплотой. Теплота — это одна из основных термодинамических величин в классической феноменологическойтермодинамике. Количество теплоты входит в стандартные математические формулировки первого и второго начал термодинамики.Для изменения внутренней энергии системы посредством теплообмена также необходимо совершить работу. Однако это не макроскопическая работа, которая связана с перемещением границы системы. На микроскопическом уровне эта работа складывается из работ сил, действующих на молекулы системы на границе контакта более нагретого тела с менее нагретым, то есть энергия передаётся посредством столкновений молекул. Поэтому с точки зрения молекулярно-кинетической теории различие между работой и теплотой проявляется только в том, что совершение механической работы требует упорядоченного движения молекул на макроскопических масштабах, а передача энергии от более нагретого тела менее нагретому этого не требует.Энергия может также передаваться излучением от одного тела к другому и без их непосредственного контакта.Количество теплоты не является функцией состояния, и количество теплоты, полученное системой в каком-либо процессе, зависит от способа, которым она была переведена из начального состояния в конечное.Единица измерения в Международной системе единиц (СИ) — джоуль. Как единица измерения теплоты используется также калория. В Российской Федерации калория допущена к использованию в качестве внесистемной единицы без ограничения срока с областью применения «промышленность».

Определение

Количество теплоты входит в математическую формулировку первого начала термодинамики, которую можно записать как ΔQ = A + ΔU. Здесь ΔU — изменение внутренней энергии системы, ΔQ — количество теплоты, переданное системе, а A — работа, совершённая системой. Однако определение теплоты должно указывать способ её измерения безотносительно к первому началу. Так как теплота — это энергия переданная в ходе теплообмена, для измерения количества теплоты необходимо пробное калориметрическое тело. По изменению внутренней энергии пробного тела можно будет судить о количестве теплоты, переданном от системы пробному телу. Без использования пробного тела первое начало теряет смысл содержательного закона и превращается в бесполезное для расчётов определение количества теплоты.Пусть в системе, состоящей из двух тел X и Y, тело Y (пробное) заключено в жёсткую адиабатическую оболочку. Тогда оно не способно совершать макроскопическую работу, но может обмениваться энергией (то есть теплотой) с телом X. Предположим, что тело X также почти полностью заключено в адиабатическую, но не жёсткую оболочку, так что оно может совершать механическую работу, но обмениваться теплотой может лишь с Y. Количеством теплоты, переданным телу X в некотором процессе, называется величина QX = − ΔUY, где ΔUY — изменение внутренней энергии тела Y. Согласно закону сохранения энергии, полная работа, выполненная системой, равна убыли полной внутренней энергии системы двух тел: A = − ΔUxΔUy, где A — макроскопическая работа, совершенная телом X, что позволяет записать это соотношение в форме первого начала термодинамики: ΔQ = A + ΔUx. Таким образом, вводимое в феноменологической термодинамике количество теплоты может быть измерено посредством калориметрического тела (об изменении внутренней энергии которого можно судить по показанию соответствующего макроскопического прибора). Из первого начала термодинамики следует корректность введённого определения количества теплоты, то есть независимость соответствующей величины от выбора пробного тела Y и способа теплообмена между телами. При таком определении количества теплоты первое начало становится содержательным законом, допускающим экспериментальную проверку, так как все три величины, входящие в выражение для первого начала, могут быть измерены независимо.

Первое начало термодинамики — один из трёх основных законов термодинамики, представляет собой закон сохранения энергии для термодинамических систем.Первое начало термодинамики было сформулировано в середине XIX века в результате работ немецкого учёного Ю. Р. Майера, английского физика Дж. П. Джоуля и немецкого физика Г. Гельмгольца[1]. Согласно первому началу термодинамики, термодинамическая система может совершать работу только за счёт своей внутренней энергии или каких-либо внешних источников энергии. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника.




Поделиться с друзьями:


Дата добавления: 2014-11-08; Просмотров: 2149; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.