Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Решение. Полученное уравнение определяет гиперболу с центром в точке и осями симметрии параллельными координатным осям




.

.

.

.

Полученное уравнение определяет гиперболу с центром в точке и осями симметрии параллельными координатным осям. Для построения гиперболы в системе координат : 1) отмечаем центр гиперболы ; 2) проводим через центр пунктиром оси симметрии гиперболы; 3) строим пунктиром основной прямоугольник гиперболы с центром и сторонами и параллельными осям симметрии; 4) проводим через противоположные вершины основного прямоугольника пунктиром прямые, являющиеся асимптотами гиперболы, к которым неограниченно близко при бесконечном удалении от начала координат приближаются ветви гиперболы, не пересекая их; 5) изображаем сплошной линией ветви гиперболы (рис. 1).

Ответ: Гипербола с центром в точке (см. рис.1)..

Рис.1

 

б) Выделяя полные квадраты в левой части

уравнения , преобразуем его следующим образом:

Полученное уравнение определяет эллипс с центром в точке и осями симметрии параллельными осям координат. Для построения эллипса в системе координат : 1) отмечаем центр эллипса ; 2) проводим через центр пунктиром оси симметрии эллипса; 3) строим пунктиром основной прямоугольник эллипса с центром и сторонами и параллельными осям симметрии; 4) изображаем сплошной линией эллипс, вписывая его в основной прямоугольник так, чтобы эллипс касался его сторон в точках пересечения прямоугольника с осями симметрии (рис.2).

Ответ: Эллипс с центром в точке (см. рис.2).

в). Выделяя полные квадраты в левой части уравнения , преобразуем его следующим образом:

Полученное уравнение определяет параболу с вершиной в точке и осью симметрии параллельной оси . Для построения параболы в системе координат : 1) отмечаем вершину параболы ; 2) проводим через вершину пунктиром ось симметрии параболы; 3) изображаем сплошной линией параболу, направляя её ветвь, с учётом того, что параметр параболы , в положительную сторону оси (рис.3).

Ответ: Парабола с вершиной в точке (см. рис.3).

 

 

 

 

Рис.2. Рис.3.

9.1-30. Требуется:

а) найтиобласть определения функции ;

б) установить чётность (нечётность) функции .

Решение. а) Естественную область определения находим как множество всех значений аргумента функции, для которых формула имеет смысл: . Решив (на числовой прямой) систему неравенств , устанавливаем, что геометрическим образом множества является промежуток .

б) Находимсначала естественнуюобласть определения функции : . Решив (на числовой прямой) неравенство , устанавливаем, что геометрическим образом множества является объединение промежутков .

Так как область является симметричной относительно точки , то проверяем выполнение для всех условий: или , учитывая чётность и нечётность основных элементарных функций, входящих в аналитическое выражение .

Если область не симметрична относительно точки , то на этом множестве является функцией общего вида.

Для этого находим . Поскольку для всех , то функция является чётной.

Ответ: а) , ;

б) функция - чётная.

10.1-30. Вычислить пределы (не пользуясь правилом Лопиталя):

а) б) в) г) д)

Вычисление предела , где , начинают всегда с подстановки в предельного значения её аргумента . В результате могут получиться неопределённости , , , которые раскрывают тождественными преобразованиями такими, чтобы преобразованное выражение получилось определённым. При вычислении пределов используют свойства конечных пределов и бесконечно больших функций, а также следующие известные пределы: , , (), , , , , .

Решение. а) При подстановке вместо переменной её предельного значения получим неопределённость . Для её раскрытия сначала разделим числитель и знаменатель дроби на (старшую степень переменной в числителе и знаменателе), после чего используем свойства конечных пределов и бесконечно больших функций. Получим

б) При подстановке вместо переменной её предельного значения получим неопределённость . Для её раскрытия выделим в числителе и знаменателе дроби общий множитель вида , где - некоторое число, т.е. множитель . Затем сократим на него числитель и знаменатель дроби, после чего используем свойства пределов.

1) В квадратном трёхчлене множитель выделяют разложением квадратного трёхчлена по формуле , где . 2) В выражении множитель выделяют следующим способом:

.

В результате получим

.

в) При подстановке вместо переменной её предельного значения получим неопределённость . Выделим в числителе множители вида , где при и используем свойства пределов. Получим

Для раскрытия неопределённостей , содержащих тригонометрические и обратные тригонометрические функции, в числителе и знаменателе дроби выделяют сначала множители вида: , , , , где при , используя формулы тригонометрии: , , . После чего применяют свойства пределов, учитывая, что: , , , .

г)

Для раскрытия неопределённости , возникающей при вычислении предела , где , , сначала выражение представляют в виде , где при . После чего используют свойства пределов, заменяя выражение его предельным значением и учитывая, что = .

 

При подстановке вместо переменной её предельного значения получим неопределённость . Представим в виде , где при , следующим способом:

= . Тогда учитывая, что , , получим = = .

Ответ: а) ; б) ; в) ; г) .

11.1-30. Для указанной функции требуется: а) выяснить при каких значениях параметра функциябудетнепрерывной; б) найтиточки разрыва функции и исследовать их характер. Построить график функции.

а) ; б) .

Точками разрыва функции являются точки разрыва функций в промежутках , ,…, , кроме того, точками возможного разрыва функции являются точки в окрестности которых и в самих точках функция задаётся разными аналитическими выражениями.

Точка является точкой непрерывности функции тогда и только тогда, когда: .

а) Поскольку функции и непрерывны в промежутках и как элементарные функции, определённые в каждой точке данных промежутков, то непрерывностьфункции может нарушиться только в точке её возможного разрыва .

Определяем значение параметра из условия непрерывности функции в точке : . Вычисляя , , : , , , из условия непрерывности , находим .

График непрерывной функции имеет вид изображённый на рис. 1.

б) Функции и непрерывны в промежутках и как элементарные функции, определённые в каждой точке данных промежутков, а функция в промежутке имеет точкой разрыва точку , в которой она не определена. Тогда для функции точка является точкой разрыва, а точки и , в окрестности которых и в самих точках функция задаётся разными аналитическими выражениями, являются точками возможного разрыва.

Исследуем на непрерывность точки :

1)

.

Следовательно, точка - точка разрыва 1-го рода функции .

2)

Следовательно, точка - точка бесконечного разрыва (2-го рода) функции .

3)

.

Следовательно, точка - точка непрерывности функции .

График функции имеет вид, изображённый на рис.2.

Ответ: а) Функция непрерывна при (рис.1); б) - точка разрыва 1-го рода, -точка бесконечного разрыва функции (рис.2).

 

Рис.1 Рис.2

12.1-30. Даны комплексные числа , , и алгебраическое уравнение . Требуется: а) вычислить , , ; б) представить комплексное число в тригонометрической форме, вычислить и результат представить в алгебраической форме; в) найти все корни алгебраического уравнения на множестве комплексных чисел.




Поделиться с друзьями:


Дата добавления: 2014-12-08; Просмотров: 515; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.052 сек.