Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Властивості скалярного добутку




Скалярний добуток векторів

ДОБУТКИ ВЕКТОРІВ

Лекція 6

Означення скалярного добутку. Скалярним добутком двох ненульових векторів і називається число, що дорівнює добутку довжин цих векторів на косинус кута між ними.

Якщо хоча б один із двох даних векторів нульовий, то їх скалярний добуток за означенням вважається рівним нулю.

Позначається або , або . Таким чином, за означенням,

, (6.1)

де .

Так як є проекцією вектора на вектор , а – проекцією вектора на вектор , то формулі (6.1) можна надати іншого вигляду:

, (6.2)

тобто скалярний добуток рівний добутку довжини одного з них на проекцію іншого на перший вектор.

1. .

Справедливість цієї властивості випливає з означення.

2. .

Доведення. .

3. .

Доведення.

.

4. Скалярний квадрат вектора рівний квадрату його довжини:

.

Доведення. .

Зокрема, .

Якщо добути корінь із скалярного квадрата вектора, то отримаємо не початковий вектор, а його модуль , тобто .

5. Якщо ненульові вектори і ортогональні, то їх скалярний добуток рівний нулю і навпаки, якщо скалярний добуток двох ненульових векторів рівний нулю, то ці вектори ортогональні.

Доведення. Так як , то , а отже і .

Якщо і , , то і .

Зокрема, .

Приклад 6.1. Знайти , якщо , , , ,

.

Розв’язок.

. t

Приклад 6.2. Знайти довжину вектора ,якщо , ,

.

Розв’язок.

t

Скалярний добуток в координатній формі. Нехай в декартовій прямокутній системі координат задані вектори , або, що те ж саме, , .

Знайдемо скалярний добуток цих векторів, перемноживши їх як многочлени згідно властивостям 1 – 3:

.

Згідно властивостям 4, 5, отримаємо:

. (6.3)

Таким чином, скалярний добуток векторів рівний сумі добутків їх однойменних координат.

За формулою (6.3) маємо

, (6.4)

звідки

. (6.5)

Приклад 6.3. Знайти довжину вектора .

Розв’язок. t

Нехай в декартовій прямокутній системі координат задані точки , .

Відстань між двома точками і рівна

. (6.6)

Так як , то кут між ненульовимивекторами і визначається за формулами:

,

тобто

. (6.7)

З останньої формули випливає умова перпендикулярності ненульових векторів і :

. (6.8)

Нехай кути, які утворює вектор з осями координат , , , відповідно рівні . Тоді проекції вектора на осі координат рівні

, , . (6.9)

Звідси

, , . (6.10)

Числа , , називаються напрямними косинусами вектора .

Підставивши вирази (6.9) в рівність (6.4), отримаємо

.

Скоротивши на , отримаємо співвідношення

.

Приклад 6.4. Довести, що діагоналі чотирикутника, заданого координатами вершин , , , , взаємно перпендикулярні.

Розв’язок. Складемо вектори і , що лежать на діагоналях даного чотирикутника:

; .

Знайдемо скалярний добуток цих векторів:

.

Згідно властивості 5, вектори і перпендикулярні, що й треба було довести. t

Приклад 6.5. Дано трикутник з вершинами в точках , , . Знайти проекцію сторони на сторону .

Розв’язок. Складемо вектори і , що лежать на сторонах даного трикутника:

; .

З формули (6.2) знаходимо

. t

Приклад 6.6. Знайти кут між векторами і , якщо , .

Розв’язок. За формулою (6.7) знаходимо

,

. t

Приклад 6.7. Знайти напрямні косинуси вектора , якщо , .

Розв’язок. Знайдемо координати і довжину вектора :

,

.

За формулами (6.10)

, , . t

 




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 1177; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.026 сек.