КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Методические указания (рекомендации) по изучению дисциплины
Тема 19. Проверка статистических гипотез Сущность проверки статистических гипотез. Нулевая и конкурирующая гипотезы, ошибки первого и второго рода; статистический критерий; уровень значимости и критическая область; мощность критерия. Общая схема проверки гипотез. Проверка гипотез о значениях числовых характеристик, о законе распределения вероятностей, об однородности выборки, о вероятностях случайных событий.
Дисциплина «Математика» является базовой не только для предметов естественнонаучного цикла, но также для таких курсов как «Микроэкономика», «Логистика» и др. Методические указания по темам программы составлены с ориентацией на учебник [1], который может также с успехом использоваться на семинарских занятиях. Для лучшего усвоения теоретического материала необходимо подробно разобрать примеры, приведённые в параграфах [1], которые рекомендуются ниже. Это относится ко всем темам дисциплины. По теме 1 следует прочитать первую часть введения и параграф 1.1.[1], обратив особое внимание на теоретико-множественную символику, операции над множествами и их геометрическую интерпретацию (круги Эйлера). По теме 2 нужно изучить параграфы 10.1.(пункт «Собственные значения и собственные векторы матрицы» при первом чтении можно опустить), 10.2.,11.1.,11.2.[1], обратив особое внимание на следующие понятия и факты: свойства матриц; действия с матрицами; свойства и методы нахождения определителей; порядок нахождения обратной матрицы. По теме 3 нужно изучить параграфы 12.1.-12.4.,13.1.,13.4.[1], обратив особое внимание на следующие понятия и факты: решение системы линейных уравнений; совместная и несовместная системы; определённая и неопределённая системы; методы Гаусса и Крамера. В параграфах 13.1. и 13.4. приведены очень важные для будущих экономистов содержательные задачи, в решении которых используются методы линейной алгебры. По теме 4 нужно изучить параграфы 9.1.-9.3,1.4.[1], обратив особое внимание на следующие понятия и факты: координата вектора; скалярное произведение и его свойства; угол между векторами; разложение вектора по базису; комплексное число; арифметические операции над комплексными числами; тригонометрическая форма комплексного числа; формула Муавра. По теме 5 нужно изучить параграфы 10.3.,10.4.,11.3.,13.3.[1], обратив особое внимание на следующие понятия и факты: квадратичная форма; канонический вид квадратичной формы; линейный оператор; матрица линейного оператора; собственное значение и собственный вектор линейного оператора; структурная матрица торговли. По теме 6 нужно изучить параграф 3.9.[1], обратив особое внимание на следующие понятия и факты: уравнение линии на плоскости; различные виды уравнения прямой; угол между двумя прямыми; линии второго порядка. По теме 7 нужно изучить параграфы 3.1.,3.8.[1], обратив особое внимание на следующие понятия и факты: область определения функции; график функции; сложная функция; функции спроса и предложения. По теме 8 нужно изучить параграфы 2.1.,2.2.,3.2.-3.5.[1], обратив особое внимание на следующие понятия и факты: числовая последовательность; предел числовой последовательности; бесконечно малые и бесконечно большие последовательности; свойства сходящихся последовательностей; предел функции; два замечательных предела. По теме 9 нужно изучить параграфы 3.6.,3.7.[1], обратив особое внимание на следующие понятия и факты: непрерывность функции в точке; непрерывность справа и слева; разрыв 1-го и 2-го рода. По теме 10 нужно изучить параграфы 4.1.-4.6.[1], обратив особое внимание на следующие понятия и факты: понятие производной; геометрический и физический смысл производной; уравнение касательной к графику функции в данной точке; понятие дифференциала; правила дифференцирования суммы, произведения и частного; производная сложной и обратной функции; таблица производных простейших элементарных функций; производные высших порядков. По теме 11 нужно изучить параграфы 5.1.-5.3.[1], обратив особое внимание на следующие понятия и факты: виды неопределённостей; раскрытие неопределённостей; правило Лопиталя; формула Маклорена; разложение основных элементарных функций в ряд Маклорена; схема исследования функций и построения графиков. По теме 12 нужно изучить параграфы 8.1.-8.5.[1], обратив особое внимание на следующие понятия и факты: функция нескольких переменных; линия уровня функции двух переменных; частные производные первого порядка; градиент функции нескольких переменных; частные производные высших порядков; равенство смешанных производных; необходимое условие существования локального экстремума функции нескольких переменных; достаточное условие существования локального экстремума функции двух переменных. По теме 13 нужно изучить параграфы 6.1.-6.4.[1], обратив особое внимание на следующие понятия и факты: первообразная; неопределённый интеграл; основные свойства неопределённого интеграла; таблица основных неопределённых интегралов; непосредственное интегрирование; метод подстановки; метод интегрирования по частям. По теме 14 нужно изучить параграфы 7.1.-7.7.[1], обратив особое внимание на следующие понятия и факты: интегральная сумма, определённый интеграл как предел интегральных сумм; основные свойства определённого интеграла; формула Ньютона-Лейбница; методы вычисления определённого интеграла; нахождение площади плоской фигуры; понятие несобственного интеграла. По теме 15 нужно изучить параграфы 14.1.-14.5.,15.9.[1], обратив особое внимание на следующие понятия и факты: основные формулы комбинаторики; испытание; достоверное и невозможное события; вероятность случайного события; классическое определение вероятности случайного события; теорема сложения вероятностей несовместных событий; противоположное событие и нахождение его вероятности; условная вероятность; теорема умножения вероятностей; независимые события; формула полной вероятности; формула Байеса; цепь Маркова; переходные вероятности; связь начального и произвольного состояний; равенство Маркова; схема и формула Бернулли; локальная и интегральная теоремы Лапласа. По теме 16 нужно изучить параграфы 15.1.-15.5.[1], обратив особое внимание на следующие понятия и факты: дискретные и непрерывные случайные величины; закон распределения дискретной случайной величины; биномиальное распределение; распределение Пуассона; числовые характеристики дискретной случайной величины и их свойства; дискретная двумерная случайная величина и закон её распределения; корреляционный момент (ковариация) случайных величин; функция распределения непрерывной случайной величины и её свойства; плотность распределения непрерывной случайной величины и её свойства; числовые характеристики непрерывных случайных величин; равномерное и нормальное распределения. По теме 17 нужно изучить первую часть параграфа 15.6.[1], обратив особое внимание на следующие понятия и факты: генеральная совокупность и выборка; статистическое распределение выборки; эмпирическая функция распределения; полигон и гистограмма. По теме 18 нужно изучить вторую часть параграфа 15.6.[1], обратив особое внимание на следующие понятия и факты: статистические оценки параметров распределения; общая дисперсия, внутригрупповая и межгрупповая дисперсии, связь между ними; эмпирические моменты, асимметрия и эксцесс эмпирического распределения; доверительный интервал. По теме 19 нужно изучить параграф 15.7.[1], обратив особое внимание на следующие понятия и факты: виды статистических гипотез; общая схема проверки статистических гипотез; критическая область; ошибки первого и второго рода; мощность критерия; основные типы статистических критериев.
Дата добавления: 2014-12-08; Просмотров: 280; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |