Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Достаточные признаки существования экстремума




Необходимые условия экстремума

Исследование функции нa экстремум

Пусть функция f(x) задана и непрерывна па отрезке [a;b] и не является в нем монотонной. Точка x0 называется точкой локального максимума, если существует такая δ - окрестность точки x0, что для всех точек этой окрестности выполняется неравенство f(x0)≥f(x) (рис.1)

Аналогично определяется точка локального минимума.

Точка х0 называется точкой локального минимума, если существую такая δ - окрестность точки х0, что для всех точек этой окрестности выполняется неравенство f(x0)≤f(x) (рис. 2).

Если функция f(x) в точке x0, имеет экстремум, то производная f’(x0) обращается в нуль или не существует. Точка x0, в которой f’(x0)= 0, называется стационарной точкой.

Правило 1. Если при переходе (слева направо) через стационарную точку x0, производная f’(x0) меняет знак с плюса на минус, то в точке x0 функция f’(x0) имеет максимум; если с минуса на плюс, то минимум; если знак не меняет, то экстремума нет.

Правило 2. Пусть функция f(x) дважды дифференцируема и имеет непрерывную вторую производную в точке x0 и в некоторой ее окрестности, тогда если f’(x0)=0, a f’’(x0), то в точке х0 функция f(x0) достигает экстремума:

1) максимума, если f’’(x0)< 0. 2) минимума, если f’’(x0) >0.

Пример: Используя ранее рассмотренный пример, можно увидеть, что производная при переходе через точки -1 и 1 меняет знак, следовательно, в этих точках имеется экстремум, причем в точке -1 - максимум, а в точке 1 - минимум.

 


-1 1

в). Выпуклость. Вогнутость. Точки перегиба.

График функции y=f(x) называется выпуклым в интервале (а, b), если он расположен ниже касательной. проведенной в любой точке этого интервала (рис. З).

График функции y=f(x) называется вогнутым на интервале (а, b), если он расположен выше касательной, проведенной в любой точке этого интервала (рис. 4).




Поделиться с друзьями:


Дата добавления: 2014-12-10; Просмотров: 632; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.