Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод подстановки (интегрирование заменой переменной)




Метод непосредственного интегрирования

Методы интегрирования

Наиболее важными методами интегрирования являются:
1) метод непосредственного интегрирования (метод разложения),
2) метод подстановки (метод введения новой переменной),
3) метод интегрирования по частям.

Задача нахождения неопределенных интегралов от многих функций решается методом сведения их к одному из табличных интегралов.

Пример типового расчета:

Найти неопределенный интеграл: ∫cos(7x-3)dx

∫cos(7x-3) dx = ∫cos(7x-3)d(7x-3)= sin(7x-3)+C

Алгоритм вычисления неопределенного интеграла методом подстановки:

1. Определяют, к какому табличному интегралу приводится данный интеграл (предварительно преобразовав подынтегральное выражение, если нужно).

2. Определяют, какую часть подынтегральной функции заменить новой переменной, и записывают эту замену.

3. Находят дифференциалы обеих частей записи и выражают дифференциал старой переменной (или выражение, содержащее этот дифференциал) через дифференциал новой переменной.

4. Производят замену под интегралом.

5. Находят полученный интеграл.

6. В результате производят обратную замену, т.е. переходят к старой переменной. Результат полезно проверять дифференцированием.

Пример типового расчета:

 

Введем подстановку:

Дифференцируя это равенство, имеем:

Выразив отсюда , получим: . Подставив в данный интеграл вместо и их выражения, получим:

)4 .




Поделиться с друзьями:


Дата добавления: 2014-12-16; Просмотров: 1696; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.