КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Вказані методи досить складні та в процесі розв’язання задач використовують також статистичні методи, тому надалі вони розглядатися не будуть
Нейромережі мають здатність до навчання на прикладах та до узагальнення даних, здатність адаптуватися до змін властивостей об’єкта управління і зовнішньго середовища. Генети́чні алгори́тми - це евристичні алгоритми пошуку, які використовуються для розв’язання задач оптимізації та моделювання шляхом випадкового підбору, комбінування і варіації параметрів, з використанням механізмів, що нагадують біологічнуеволюцію. Відомий американський фахівець з прогнозування Макридакис [4] за допомогою емпіричних досліджень та лабораторних експериментів доказав, що прогнози побудовані за допомогою кількісних методів більш точні ніж побудовані за допомогою якісних методів. Людина намагається бути оптимістом і недооцінює ступінь невизначеності майбутнього. До того ж вартість прогнозування якісними методами часто буває вище ніж при використанні кількісних методів. Але це не означає, що потрібно відкинути якісні методи. Тільки сполучання обох методів, розуміння й фахова оцінка результатів кількісного прогнозування надає змогу обґрунтувати рішення, що приймаються. Сучасні комп’ютерні технології прогнозування базуються на інтерактивних статистичних методах прогнозування з використанням економетричних баз даних, імітаційних і економіко-математичних динамічних моделях, які сполучають експертні, математико-статистичні та моделюючі блоки. Прогнози, що складаються на майбутнє, класифікуються на короткострокові (до 1 року) й довгострокові. Довгострокові прогнози використовуються керівництвом підприємства для визначення стратегії розвитку бізнесу. Короткострокові прогнози використовуються фахівцями середнього і нижчого ланцюгів для розробки термінових рішень. При обранні методів прогнозування слід керуватися тезою, що метод повинний давати точний, своєчасний і зрозумілий для фахівця прогноз для обґрунтування рішення, що приймається. Крім того, результати процедури прогнозування повинні приносити прибуток, який покриває витрати на її здійснення. Процес прогнозування складається з 5 етапів: 1. Збирання даних. Дуже важливий і не простий етап, від якого залежить кінцевий результат, тому що точність прогнозу залежить від достовірності тих даних, на яких він побудований. Тому для прогнозування дані повинні бути достовірними і точними, відображати ті обставини, які аналізуються, узгодженими з попередніми спостереженнями (наприклад, зміна цін, складу корзини споживача і т. ін.), збиратися через визначені інтервали часу. 2. Редукція або стиснення даних. Якщо зібрано дуже багато або, навпаки, мало даних, дані не мають прямого відношення до задачі і т. ін. Всі такі обставини знижують точність прогнозу. 3. Побудова моделі та її оцінка. На цьому етапі підбирається модель, яка відповідає особливостям назбираних даних і має найменшу помилку прогнозу. При цьому модель повинна бути зрозуміла фахівцям, що приймають рішення. 4. Екстраполяція обраної моделі. Фактичний прогноз по одержаних і перевірених даних. 5. Оцінка одержаного прогнозу – порівняння одержаних значень з фактичними даними. Є цілий ряд методів оцінки рівня помилок, які допускає метод, що застосовувався. Для прогнозування був розроблений цілий ряд програмних засобів, що прискорюють виконання роботи й значно зменшують її трудоємність. До них відносяться два типа пакетів програм: статистичні пакети (SPSS, Minitab, SAS, СТАТПРО та ін.) і пакети саме для прогнозування (Вериста, Олімп, Forecast Expert російської фірми Pro-Invest, MetaStock, Matlab та ін.). Однак перелічені пакети мають досить високу вартість і потребують затрат на навчання персоналу, тому багато користувачів обрали використання графічних і статистичних функцій Microsoft Excel. Excel – це вже невід’ємна частина робочого місця фахівця, її знають, легко навчаються її використовувати, деякі графічні функції Excel створюють більш ясне візуальне уявлення даних ніж деякі статистичні пакети. Але у Excel були знайдені помилки у деяких статистичних функціях, що приводить до некоректних результатів. Все з часом змінюється, програми удосконалюються, питання, має Excel більше переваг або недоліків для прогнозування не вирішене остаточно і мабуть не буде вирішене ніколи. А саме Excel надає нам можливість засвоїти найбільш використані у практиці методи прогнозування.
Дата добавления: 2014-12-16; Просмотров: 520; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |