КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Приведение грамматик
Для одного и того же формального языка могут существовать различные грамматики. Поэтому возникает проблема выбора грамматики, наиболее подходящей по тем или иным свойствам, иначе проблема эквивалентного преобразования грамматик к нужному виду. Желаемые свойства могут быть такими как: * однозначность; * минимальное число правил или нетерминальных символов; * простота вывода.
Универсальных методов эквивалентных преобразований контекстно-свободных грамматик (КСГ) не существует из-за неразрешимости алгоритмических проблем распознавания эквивалентности контекстно-свободных грамматик и существенной неоднозначности контекстно-свободных языков. Однако, существуют некоторые преобразования, которые могут улучшать грамматику.
Определение. Назовем нетерминальный символ A выводимым (достижимым), если существует S ® * a A b и производящим, если A®*g, g Î V*, a и b - произвольные цепочки, g - терминальная цепочка.
Определение. Нетерминальный символ называется существенным, если он является достижимым и производящим. В противном случае, он называется несущественным (бесполезным).
Покажем, что для любой КСГ можно построить эквивалентную ей приведенную контекстно-свободную грамматику. Для этого рассмотрим алгоритм выделения достижимых символов:
1. Обозначим через M1 множество всех нетерминальных символов, содержащихся в правых частях правил вида: S ® a, a Î (V È W)*. Очевидно, что все символы M1 достижимы. 2. Mi = M1. 3. Определим Mi-+1 = Mi È Mi’, как множество, состоящее из объединения множеств Mi и Mi’, где Mi’ - множество всех нетерминальных символов правых частей правил вида: A ® a, A Î Mi, a Î (V È W)*. 4. Mi+1 ¹ Mi? Если - да, то Mi = Mi+1 и переход к п. 3. 5. Окончание алгоритма.
Массив Mi+1 - множество достижимых символов и его размерность k £ êW ê.
Пример. Для заданной грамматики вида: S ®a B a C ® b B B ® a B C a C ® a C B ® b
определить множество достижимых символов.
Решение. Найдем множества Mi для заданной грамматики в соответствии с представленным алгоритмом. Ими будут множества M1 = {B, S}, M2 = M1 È {C}, M3 = M2 = {B, S, С} - множество достижимых символов.
Пример. Для заданной грамматики вида:
S ®A B A C ® b b B ® A B C A D ® D A B ® b D ® C A A ® a
определить множество достижимых символов.
Решение. Найдем множества Mi для заданной грамматики в соответствии с представленным алгоритмом. Ими будут множества M1 = {A, B, S}, M2 = M1 È {C}, M3 = M2 = {A, B, S, С} - множество достижимых символов. D - недостижимый символ, а значит бесполезный. Замечание. Нетерминальный символ, соответствующий аксиоме грамматики, всегда считается достижимым.
Рассмотрим алгоритм выделения производящих символов. Он работает с конца вывода. 1. Обозначим через Q1 множество всех нетерминальных символов, для которых в G имеются правила вида: A ® g, g Î V*, A Î W. Все символы множества Q1 - производящие. 2. Qi = Q1. 3. Qi-+1 = Qi È Qi‘, где Qi‘ - множество нетерминальных символов левых частей правил, для которых в грамматике имеются правила вида: A ® a, a Î (V È Qi)*. 4. Если Qi+1 ¹ Qi, то Qi = Qi+1 и переход к пункту 3. 5. Окончание алгоритма.
Qi+1 - множество производящих символов. Его мощность m £ êW ê. Пример. Для заданной грамматики вида:
S ®A D A C ® b b S ® B A ® D C D ® A B c A D ® D A D ® C A A ® a.
определить множество производящих символов. Решение. Найдем множества Qi для заданной грамматики в соответствии с представленным алгоритмом. Ими будут множества Q1 = {A, С}, Q2 = Q1 È{D, S}, Q3 = Q2 = {A, D, S, С} - множество производящих символов. B - непроизводящий символ, а значит бесполезный. После преобразования грамматики по вышеописанным алгоритмам получаем грамматику, не содержащую бесполезные (несущественные) символы.
Удаление цепных правил Цепные правила - это правила вида: A ® B, A, B Î W. Назначение процедуры удаления цепных правил состоит в сокращении памяти требуемой под дерево вывода. Эта процедура состоит из 2-х этапов:
1. Для каждого нетерминального символа A Î W составляется множество WA, состоящее из нетерминальных символов, выводимых из A, причем A Î WA . 2. В грамматике выделяют не цепные правила вида: b ® a, a Ï W. Они записываются в новую грамматику для каждого b Î WA , для которого существует выводимость a из b.
Пример. Для заданной грамматики вида:
G = {V, W, A, P}; V={a}; W={A, B, C}; P = { A ® B, B ® C, C ® a } удалить цепные правила, сохранив основные свойства грамматики.
Решение. Найдем множества Wi для заданной грамматики в соответствии с представленным алгоритмом. Ими будут множества:
WA = {A, B, C}; WB = { B, C }; WC ={ C }.
Что позволяет записать новые правила грамматики, в которых нет цепных правил, но сохраняется порождаемый формальный язык. P’= {A®a, B®a, C®a}.
Пример. Для заданной грамматики вида:
G = {V, W, I, P}; V = {a, b}; W = { A, B, C, D, I }; P = { I ® A, A ® a C, I ® B, B ® C, C ® D, D ® b } удалить цепные правила, сохранив основные свойства грамматики.
Решение. Найдем множества Wi для заданной грамматики в соответствии с представленным алгоритмом. Ими будут множества:
WI = { I, A, B, C, D }; WA = { C, D }; WB ={ C, D }; WC = { D }.
Что позволяет записать новые правила грамматики, в которых нет цепных правил, но сохраняется порождаемый формальный язык. P’ = { I ® a C, A ® a C, I ® b, B ® b, C ® b, D ® b }.
Замечание. Достоинство грамматик без цепных правил состоит в отсутствии циклов в выводах и ни одна цепочка в выводе не повторяется.
Дата добавления: 2014-12-16; Просмотров: 956; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |