КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Операции над векторами в координатной форме
Прямоугольная декартова система координат Oxy на плоскости задается совокупностью точки О (начало системы координат) и пары перпендикулярных единичных векторов , При этом ось Ox, направление которой совпадает с направлением вектора называется осью абсцисс. Oсь y, совпадающая по направлению с вектором – осью ординат. Вся плоскость называется координатной плоскостью xOy. За масштабную единицу выбирают длину Координатами точки М являются соответственно алгебраические проекции точки М на координатные оси Ox и Oy. Таким образом, точке М на плоскости соответствует упорядоченная пара (x, y) действительных чисел x и y. Пишут: M (x, y). Каждой точке М на плоскости соответствует единственный радиус-вектор который имеет те же координаты, что и точка М. Пишут: Вектор может быть представлен также в виде линейной комбинации векторов . Если на плоскости заданы точки A (x 1, y 1), B (x 2, y 2), то , длина (5) Пусть тогда единичный вектор (орт) есть (6) При этом координаты орта задают направление вектора и называются направляющими косинусами. Если то . (7) Если , то верны формулы (8) (9)
(10) . (11) Для коллинеарных векторов выполняется . Координаты точки C (xc, yc), делящей отрезок AB в отношении λ > 0, находят по формулам (12) Пример 1. Вектор образует с вектором угол Найти координаты вектора на плоскости, если Решение. Орт вектора на плоскости xOy имеет координаты . Используя формулы (6) и (7), получаем Так как то . Пример 2. Найти координаты векторов, определяемых диагоналями параллелограмма, построенного на векторах Решение. Известно, что сумма и разность векторов и определяют диагонали параллелограмма, построенного на них. Значит, Тогда и, значит, Аналогично Пример 3. Координаты левого конца отрезка AB и его середины M соответственно равны A (–1, –5) и M (3, –2). Найти координаты точки В. Решение. Пусть В (xB, yB). Середина отрезка делит его длину в отношении 1:1, т. е. λ = 1. Значит, из формул (12) имеем откуда получаем Приходим к ответу: В (7, 1). Пример 4. Даны векторы Вычислить: 1) 2) 3) 4) Решение. 1. Используя формулу (10), имеем 2. Согласно формулам (8), (9), получаем Тогда, на основании формулы (10) вычисляем Получить тот же результат можно и несколько по-другому. Используем свойства скалярного произведения, а затем формулы (5) и (10): 3. Найдем координаты вектора , используя формулы (8) и (9) Значит, по формуле длины вектора (5) получаем В качестве второго способа решения примера можно использовать следующий. Поскольку , то Находим 4. Используем формулу (11) и получаем Пример 5. Даны векторы Найти косинус угла между векторами и для которых Решение. Выразим из первого заданного соотношения: Тогда, подставив во второе соотношение, получим откуда Значит, на основании формулы (11), получаем Пример 6. Пусть векторы получены из векторов поворотом относительно точки О на угол (рис. 8). Представить произвольный вектор в виде линейной комбинации векторов если
Рис. 8
Решение. Зафиксируем прямоугольную систему координат с единичными векторами В этой системе координат определим направляющие косинусы векторов Это значит, что откуда Задания для самостоятельного решения
Дата добавления: 2014-12-16; Просмотров: 1223; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |