КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Определимых задач на примере кронштейна
Методические указания к расчету статически Общие положения Осевое растяжение-сжатие Осевое растяжение-сжатие - это напряженно-деформированное состояние стержня, при котором из всех 6-ти внутренних силовых факторов не равен нулю только один - продольная сила N. Задача этой темы сводится к проверке прочности и жесткости стержней или стержневых систем Решение задач начинается с определения продольной силы N. Если для нахождения продольной силы N во всех стержнях системы достаточно уравнений статики, то система называется статически определимой, если нет - статически неопределимой. Для нахождения продольной силы применяют метод сечений. Зная продольную силу, можно рассчитать нормальные напряжения, и, сравнив их с допускаемыми, проверить прочность стержня по условию (2.2.1), или по этому же условию рассчитать площадь сечения стержня, при котором его прочность будет обеспечена. Зная продольную силу N, размеры стержня (ℓ- длину и F -площадь поперечного сечения), можно по формуле (2.2.2) рассчитать удлинение или укорочение стержня и сравнить их с допускаемым, проверить жесткость стержня. Методические указания к решению статически определимых задач и пример даны в подразделах 2.2 и 2.3. Решение статически неопределимых задач усложняется необходимостью нахождения неизвестных усилий, число которых больше, чем число уравнений статики, используемых для их нахождения. Методические указания и пример решения статически неопределимых задач даны в подразделах 2.4 и 2.5. 1. Найти продольные усилия в стержнях кронштейна методом сечений. Рассмотреть равновесие отсеченного узла. Усилия в стержнях принять растягивающими, направленными от узла. Составить уравнения равновесия на координатные оси: ZY = 0 и ΣX = 0.
2. Определить из условия прочности (2.2.1) требуемые площади F поперечных сечений стального и деревянного стержней: │σ│ = (2.2.1) где │σ│ и [σ] - нормальные действующие и допускаемые напряжения. 3. Подобрать по сортаменту стальной равнополочный уголок с указанием номера и размеров уголка по требуемой площади . Вычислить требуемую сторону квадрата или требуемый диаметр поперечного сечения деревянного стержня. Округлить требуемые размеры стороны квадрата и диаметр до целых сантиметров. 4. Определить линейное перемещение узла (рис. 3). Предварительно вычислить продольные удлинение или укорочение стержней кронштейна, учитывая фактически принятые площади сечений по формуле Δℓi = (2.2.2) 5. Построить план перемещений узла (рис. 3). В качестве полюса принять начальное положение узла. Из точки полюса параллельно соответствующим стержням в принятом масштабе отложить удлинения и укорочения стержней Δℓi. Деформация стержней кронштейна под нагрузкой Р сопровождается одновременно их поворотом в шарнирном узле. Поэтому через концы удлинений или укорочений Δℓi необходимо провести перпендикуляры и найти точку их пересечения. Отрезок плана перемещений, соединяющий полюс и точку пересечения перпендикуляров, является истинным линейным перемещением узла кронштейна.
Дата добавления: 2014-12-17; Просмотров: 1243; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |