КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
График 1. 4 страница
Тело можно представить точкой только тогда, когда ее параметры и собственная напряженность несопоставимы по рангу с параметрами и напряженностью окружающего пространства и тел, образующих структуру данного пространства. Линия или прямая есть условный след от движения точки (тела) в пространстве. И начало и конец линии входят в поверхность некоторых точек. Линии на участке от поверхности одной точки-сферы до другой имеют конечную длину изменяемой метричности, отождествляемую с некоторой метрической цифрой. Если эту же прямую продолжить за пределы поверхности конечных точек-сфер, внутрь их, то прямая станет иметь бесконечную длину, не отождествимую ни с какими действительными числами. Линия (условная), соединяющая две движущиеся определенным образом точки, называется образующим лучом или образующим. Образующий луч индексируется начальной буквой слова — Л. Так, если одна из точек неподвижна на плоскости, а другая, не меняя расстояния до первой, описывает в движении правильный круг, то образующий луч с такими свойствами в геометрии называется радиусом. В пространственных системах образующий луч Л всегда подвижен, и каждая его точка в процессе движения описывает геометрическую фигуру, соответствующую уравнению движения и коэффициенту связности. Естественно, что в уравнении движения зашифрована и напряженность области концевых точек луча и пространства, в котором луч движется. (Везде предполагается, что след движения остается только от перемещения концевых точек.) Основной способ движения луча в динамической геометрии — собственное удлинение или сокращение (пульсация) с
определенным перио-дом, сочетающийся с вращением и некоторым пространственным переме-щением, например в пространстве декартовых координат. Поэтому кривые Рис. 10. (следы), плоскости и пространства всех геометрий, включая евклидову, Лобачевского и Римана, описываются образующим лучом, один конец которого может двигаться по линии или оставаться неподвижным, а другой, в движении, удлиняться или сокращаться. На рис. 10 показано, как, двигаясь на плоскости, образующий АО от точки А до точки А', остается неизменным по длине и описывает дугу окружности полностью в соответствии с геометрией Евклида. В точке А' он в движении начинает укорачиваться и до точки А" движется по сферической кривой, описывая линию положительной кривизны в соответствии с геометрией Римана. В точке А" происходит следующий перелом и образующий на участке А" А"' начинает описывать линию отрицательной кривизны по геометрии Лобачевского до точки А'", после которой линия движения снова меняет «свою» геометрию и т.д. Переломные точки А', А", А'", А"" имеют статическую для этой области величину луча, и потому луч может быть отнесен к геометрии Евклида. Перелом есть изменение качества, процесс перехода от одной кривизны к другой. Оба конца луча могут совершать любые движения, описывать самые различные фигуры, кроме тех, которые могут привести к их пересечению между собой. Так, например, если конец луча, описывающий кривую АА'А"А'"... (рис. 10), замкнется при одновременном движении другого конца-точки О по прямой, то выписывается объемная фигура — профилирован-ный цилиндр. Если же точка О будет двигаться по окружности, то вместо цилиндра получается тор того же профиля. Таким образом, возникновение искривления как положительного, так и отрицательного, связано с изменением длины луча, создающего это «искривление». Длина луча, в свою очередь, зависит от напряженности пространства в различных направлениях от точки, из которой он исходит. Изменение напряженности не есть искривление поверхности и не приводит к нему, а вызывает изменение метричности. И, следовательно, длины луча. Покажем это на примере (рис.11). Пусть луч АО, исходящий из условной точки О, двигаясь по отрезку окружности АВО, начал удлиняться и в точке А' пересек прямую А"О. Продолжая дальнейшее движение, он пересек также прямую ОВ" — окончание дуги АВ. Дуга АВ разделена прямыми на четыре равных отрезка к, l, т, п. Прямые, разделившие дугу, продолжены до пересечения эквипотенциальной линии А" В" и также делят эту дугу на четыре равных отрезка к", l", т", п". В пространстве отрезки k" = k = l′′ = l = т" = т = п" = п, как следствие пропорционального изменения напряженности от точки О к периферии поверхности. Поскольку пропорциональность напряженности сохраняется на всей поверхности, то отрезок А'В' делится на четыре части к', l′, т', п′ так что: к' = l' = т' = п′ хотя по евклидовой и римановой геометрии к' ≠ п′. Естественно также, что к = к' = к"; l = l' = l"; т = т' = т"; п = п' = п". То есть все отрезки равны между собой так, что отношение каждого из отрезков к длине соответствующего луча между эквипотенциальными дугами будет величиной постоянной. Именно это свойство напряженности пространства обусловливает образование пространственных ячеек — основных элементов динамической геометрии. Напряженность и изменение метричности (кривизна относительно статичности) — это те факторы, которые не учитывались в теории кривизны ни Гауссом, ни Риманом. Отмечу, что кривизны поверхностей, а тем более кривизны объемов в пространстве не существует. А поскольку пространство отображает динамическую структуру реального мира, то эмпирическое подтверждение ее адекватности этому миру можно получить прямо на поверхности Земли. Рис. 11 Приведу описание нескольких экспериментов, подтверждающих такую возможность. В долине вблизи гор можно построить горизонтальную мерную милю из идеального материала длиной в 3 км (с точностью до 1 см). Произвести геодезическую съемку этой мили и перенести ее размеры по отвесу на горное плато на высоту одного, а лучше 2 км, и там построить другую горизонтальную мерную милю той же длины. Современные геодезические приборы позволяют провести операцию переноса на несколько десятков километров с точностью до 2-3 см. В соответствии с геометрией Евклида мили и в долине и на плато должны быть разной длины. Миля на плато на высоте 1 км будет на 47 см длиннее мили в долине, а на высоте 2 км – на 94 см. Следует замерить милю в долине несколькими мерными линейками, проведя ими же в аналогичных условиях измерение мили на плато, убедиться, что она в точности, до ошибок измерения, равна миле в долине, а, следовательно, мерные линейки изменили свою длину. Другой эксперимент: на горе с горизонтальным плато на высоте 2 км выложить горизонтально из 40-50 стальных стержней длиной по 20-25 м (± 0,1 мм) единый стержень километровой длины. Отметки его концов перенести по отвесу в долину под горой, потом разобрать конструкцию, перебросить ее в долину и вновь собрать. Согласно геометрии Евклида собранная конструкция будет короче отметок на 32 см. Однако стержни при измерении метром окажутся в рамках отметок ± ошибка измерения. Наконец можно просто провести геодезическими приборами измерение отрезка относительно горизонтальной поверхности в долине на длине 10 км и, замерив такую же длину, перенесенную по отвесу на плато на высоту 2 км, убедиться с достаточно грубым приближением (± 25-30 см) в исчезновении при измерении отрезка почти трехметровой длины. (Можно предположить, что аналогичные нестыковки уже встречались картографам и геодезистам и не получали теоретического объяснения.) Рассмотрим в общих чертах структуру пространственной ячейки отграниченной нейтральными зонами. Пространственные первичные ячейки образуются ядрами по периметру своей нейтральной зоны, соизмеримые по напряженности с напряженностью окружающего пространства. Они могут включать одно ядро (редко), два ядра (большинство), несколько ядер (редко). В настоящей работе напряженность схематически обозначается условной линией, как бы оставляемой ядром тела, взаимодействующего с пространством. Эти линии по наглядности являются некоторым подобием фарадеевых силовых линий, а в геометрии это геодезические линии. Прямые напряженности выходят из пространства одного ядра 1(рис 12) с фиктивным центром О и входят в пространство другого ядра 2 с фиктивным центром О2. Линии напряженности О1АО2, О1ВО2, О1СО2..., соединяющие фиктивные центры, в пространстве параллельны. В точках А, В, С, D,... они испытывают кажущееся преломление, обусловленное зоной единой минимальной напряженности — нейтральной или эквипотенциальной зоной. Ячейка образуется только тогда, когда оба ядра имеют пространственную линию общей эквипотенциальной зоны (нейтральные зоны), как бы выделяющую их из окружающего пространства. Эти зоны образует из них единую систему и не позволяет ядрам покинуть ее. Именно она обусловливает дискретность пространства одного ранга. Первичные ячейки через нейтральные зоны взаимодействуют с окружающими ячейками и входят в состав ячеек несоизмеримого
Рис. 12 ранга. Общая структура пространства ¾ иерархия равенства. В пространстве ячейки между ядром и нейтральной зоной могут существовать спутники ядра 3с центром О3. Между спутником и ядром также существует нейтральная зона А'В'С... А"В"С", охватывающая спутник эллиптической сферой. Выходящие из центра О1 линии входят в центр О3 или замыкаются в нейтральной зоне. Радиус (статический) спутника определяется граничными условиями. Пространство ячейки, ядра и спутника всегда находятся в движении. Ядро как элемент ячейки и самостоятельная система единой внутренней напряженности имеет сложную структуру, обусловленную материальностью самого образования. Оно включает несколько «скорлуп»-сателлитов 1 (рис. 13), у которых нейтральная зона 2 каждой скорлупы находится либо внутри этой поверхности, либо у самой поверхности, что и удерживает их в единой системе. Поэтому сферы сателлитов, взаимодействуя нейтральными зонами, образуют на своей внешней поверхности равновеликую напряженность, интегрированную уже как напряженность самого ядра. Пространство внутри скорлуп Рис. 13. (рис. 13) материально и имеет напряженность более высокого ранга, чем снаружи. В этом про-странстве может находиться внутреннее вещественное ядро-керн 3. Его напряженность несоизмерима по рангу ни с напряженностью пространства ячейки, ни с напряженностью сателлитов. Она есть плотность другого ранга.
Геометрия свойств здесь о свойствах как элементах геометрии 2.3. Свойства пространственных систем
Рассмотрим, что неявно происходит с пространством при возникновении в нем тел, отображаемых элементами динамической геометрии [28]. Возьмем чистый лист бумаги и предположим, что этот лист есть некоторая плоскость, однородная и изотропная в четырех направлениях, а, следовательно, на пространстве листа мы не замечаем никакой структуры и внутренней напряженности. Эта поверхность может быть названа бесформенной, хаотичной, или поверхностью одного ранга. Структура этого ранга и его ячейки нами не фиксируются. Поставим в любом месте листа точку. Точка на листе никакой роли не играет, структуры не создает, и как бы не возникает напряженности различной плотности на всей поверхности. Но хаос уже исчез, точка изменяет качество всего пространства и становится центром образования нового пространства, центром структуризации и изменения его качеств, центром другого ранга. И не существенно, пространство ли это листа или пространство космоса, в котором имеется тело. Существенно в подходе к явлению, к его формализации ¾ другое. Образует ли точка пространство актуальной бесконечности или бесконечности потенциальной? Именно одна из сторон двойственности обусловливает процесс понимания формализации элементов различных пространств по мере их воссоздания на листе. Точка, как и другие элементы в пространстве потенциальной бесконечности (или в объеме), не равнозначна другим не видимым на листе точкам и уже создает (даже если это не отражают условия задачи) в окружающем пространстве некоторую напряженность, определяемую изменением метрического пространства. Именно метричность есть агент, отображающий распространение плотности напряженности от точки в пространстве. При этом на бесконечности одного ранга плотность убывает от точки до нуля. (Нулевая плотность напряженности равна напряженности, создаваемой телами нижнего ранга и потому не равна 0.) Поскольку значимость точки определяется ее рангом и рангом пространства, то ранги определяют также изменение метричности. Если на плоскости (в пространстве) имеется две или несколько точек, то напряженность между ними определяется рангом точек. Поскольку в задачах чаще всего задается одинаковый ранг, то плотность напряженности между точками становится неоднозначной. Но между ними всегда имеется зона одинаковой плотности напряженности — нейтральная зона. Структура всех напря-женностей между точками определяется именно характером и местом нейтральных зон. В плоскости (как и в объеме) актуальной бесконечности напряженность отсутствует, а следовательно, может отсутствовать и метричность (что и наблюдается в проективной геометрии). Если же она присутствует, то неизменна величиной по всей плоскости (по всему объему), и точка, как и другие фигуры в этом пространстве, на пространство никакого влияния не оказывает. Поставим еще одну точку. Структуризация возросла и снова изменилось качество всего пространства. Между точками по различным критериям может быть найдена активная область или нейтральная зона, разделяющая как их, так и плоскость листа. Или они могут быть соединены одной линией, которая делит лист уже на две иные, чем нейтральная линия, части, создавая иные пространства по обе ее стороны. Соединим точки линией, и в одном из образовавшихся пространств в стороне от линии поставим точку, создав тем самым все необходимые предпосылки для формулирования или пятой аксиомы Евклида или основной аксиомы динамики пространства. Все имеющиеся на плоскости элементы равнозначны или, по современной артикуляции, равноправны, и только движение определяет их принадлежность к динамике. Если теперь со стороны прямой, восстановив до точки М образующий луч, двигать его неизменным по длине вдоль прямой, то точка, в которую он вошел, будет оставлять след евклидовой прямой, параллельной базовой. И это будет продолжаться бесконечно, если... если мы не последуем за Дезаргом. Дезарг, исходя из кажущегося пересечения в перспективе параллельных в одной точке, предложил считать пересечения проекциями «бесконечно удаленных» точек, равноправными со всеми остальными элементами. Так, в проективную геометрию вошли «несобственные (бесконечно удаленные) точки» и «несобственные плоскости» — плоскости, на которых лежат эти точки. Введение «несобственных» точек и плоскостей нарушило равнозначность элементов геометрии, было первым качественным отображением на плоскости факторов напряженности пространства и свидетельствовало о другом ранге несобственных точек. Однако нарушения равнозначности элементов обнаружено не было, и не потому, что оно отсутствует, а потому, что и обычным, и несобственным точкам и площадям постулировали равноправие. Это постулирование равноправия обусловило полную статичность проективной геометрии, нивелировало напряжен-ности, привело к тому, что все прямые одной плоскости Дезарга всегда пересекаются на бесконечности. Таким образом, вопрос о различной напряженности у точек и линий на плоскости даже не возник. Развитие получили аксиомы статической геометрии. Если теперь, для примера, представить движение колес паровоза по рельсам в пространстве обычном и несобственном (потенциальной бесконечности), то мы увидим, как бы следуя за ним неизменными, что рельсы сначала будут параллельными (расстояние между ними — образующий луч, остается неизменным). Затем под воздействием возрастающей напряженности несобственного пространства начнут сходиться (образующий луч будет уменьшаться и, соответственно, паровоз тоже), и, подойдя к несобственной точке, луч станет по «длине» меньше ее. Пройдя поверхность сферы-точки, т.е. проникнув в объем другого ранга, луч продолжает уменьшаться и, миновав центр (но не через него), начинает возрастать до противоположной поверхности сферы. Поскольку напряженность поверхности вокруг точки сферически симметрична (в предположении, что точка находится вдали от других точек), по выходу из несобственной точки луч начнет расширяться, а рельсы, следовательно, расходиться под тем же самым углом, под которым они сходились. В результате возникнет полная иллюзия того, что в несобственной точке произошло пересечение рельсов. На самом деле, на всем протяжении движения к точке, сквозь нее и за ней рельсы оставались параллельными. Менялась же напряженность несобственного пространства и несобственной точки в полном соответствии с динамикой пространства, что и создавало иллюзию схождения и расхождения рельсов. (Иллюзию их пересечения в одной точке.) Вторично неявная напряженность геометрической поверхности проявила себя в геометриях Лобачевского и Римана. Это станет особенно заметно, если луч Л, входящий в точку М из прямой а, начинает двигаться вместе с точкой М на бесконечность, например в правую сторону (рис. 14). Причем граничные условия аксиомы запрещают точке приближение к прямой а, а лучу — сокращаться по длине, но не запрещают точке М удаляться, а лучу Рис. 14. Л удлиняться (своего рода пространственное отталкивание). Поэтому по мере движения точка начинает отклоняться от прямой — ветвь в'. Если же луч Л вместе с точкой будет двигаться в левую сторону, то получим аналогичное откло-нение от прямой а — ветвь в. Фигура, образуемая обеими ветвями как бы единой прямой в, окажется не эквидис-тантой, а некоторой седловиной образуемой двусторонним движением. В этом построении начинает проявляться физический смысл движения, и получается, что точка М замыкает на себя две самостоятельные ветви прямой в, разрывая ее и имея статус несобственной точки (точки одного ранга с прямой). Отсюда также следует, что пространство, в котором двигаются прямые, анизотропно. А потому луч Л, двигаясь от точки в любую из сторон, будет изменять свою длину пропорционально изменению напряженности пространства и движущейся точки. И также пропорционально этой напряженности будет меняться метричность отрезков по длине прямой вМв'. Если же граничные условия (формулировка Римана) препятствуют отклонению ветвей в и в ' от прямой а при движении в обе стороны от точки М, то ветви, перемещаясь на бесконечность, будут приближаться к прямой а (рис. 15). Таким образом, граничные условия не позволяют образующему лучу в движении удлиняться, оставляя ему возможность сокращения. И в этих условиях луч Л выписывает подобие эллиптической кривой (своего рода пространственное притяжение). Однако конечные точки ветвей в, в' имеющие ранг прямой а, никогда не пересекут ее. И кривая вМв' никогда не будет иметь общей точки с прямой а. Она не замкнута. Подобие линии вМв' эллиптической кривой послу-жило основанием для наречения римановой геомет-рии «сферической» и завуали-ровало как существование Рис. 15. напряженности пространства, так и разрыв кривой в точке М. Поэтому образованная данной кривой, при вращении ее вокруг а, сферическая поверхность не может считаться истинной сферой и потому, что след точки М несет в себе момент нестыковки ветвей в и в', и потому, что эта "сфера" оказываетсянезамкнутой с линией а, и потому, что внутри "сферы" остается элемент образующей ее структуры — прямая а. Напряженность, выражаемая элементами геометрии в виде неравноправных, несобственных точек и линий, по-видимому, снимается введением в геометрию понятия абсолюта — такой геометрической фигуры, которая остается неизменной при любых преобразованиях данной подгруппы. Следовательно, абсолютом считается элемент, ранг собственной напряженности которого выше остальных элементов данной плоскости. И все преобразования, изменяющие форму остальных элементов (и их напряженность), не в состоянии изменить напряженность абсолюта. Таким образом, понятие абсолюта окончательно закрыло в геометрии все направления возможного описания реального мира в терминах напряженности, движения, взаимодействия. Геометрия стала чисто статическим описанием только одной актуальной бесконечности. Попробуем в самой эскизной форме резюмировать некоторые первичные понятия и свойства элементов динамического пространства. Прежде всего, отметим важнейшую роль познания потенциальной бесконечности. Бесконечность как понятие высшая форма абстрагирования. Представление об осуществимости абстрактного движения в бесконечность приводит к противоречию с проявлением неопределенности и недостижимости в отдалении от нашего сознания. Движение в бесконечность оказывается абстракцией, связанной с возможностями качественного изменения дискретного пространства с переходом от пространства одного ранга к пространству другого ранга. Именно ранжирование бесконечностей по уровням определяет соизмеримость или несоизмеримость пространственных образований или отрезков прямых. Иерархическая равнозначность ранговых структур по их положению и естественное взаимодействие при движении определяет дискретность и непрерывность образуемого ячейками пространства плоскости или объема. Ячеистое поле пространства само для себя и для своего ранга дискретно, а для верхнего ранга непрерывно и носит полевой характер. Динамическое пространство всегда не пусто. Естественный смысл бесконечности заключается в ее количественной и качественной незавершенности. Это выражается, в частности, через изменение метричности в сопоставлении с метричностью статической геометрии. Каждый последующий шаг всегда отличен от предыдущего качественно и количественно. Как только вводится понятие бесконечного пространства, т.е пространства имеющего другое качество, и элементы геометрических фигур устремляются в бесконечность (например, пятая аксиома в формулировке Евклида), тем самым в статическую геометрию неявно вводятся новые, не присущие ей качества (движение, недостижимость бесконечности, неопределенность, время, взаимодействие и т.д.). И эти качества коренным образом изменяют поведение геометрических элементов и пространства, которое описывается ими. Эти качества приводят к взаимосвязи всех элементов движения и геометрическая статическая общность точек, отрезков, плоскостей, объемов сразу наполняется физическим содержанием и становится разделом физики; системной общностью. Общностью, в которой ни одна точка, ни одна фигура ни в одном месте пространства не обладает истинной самостоятельностью, оставаясь в то же время равновеликой по значимости и взаимодействию со всеми фигурами и пространством. И всякое ее движение в любом направление этого пространства будет сопровождаться изменением ее геометрических (статических) параметров пропорционально напряженности самого пространства. Однако динамические (физические) параметры этой общности останутся неизменными. И эти качественные противоречия изменяемости и неизменности параметров в статическом и динамическом состояниях тоже неявно заложены в пятую аксиому Евклида. Имеются неоднозначности и в соизмеримости расстояния в пространстве между двумя произвольными точками А и В. Хотя оно и в одном и в противоположном направлении количественно равно (понятие расстояния применено здесь по аналогии с Евклидом), но не эквивалентно и потому не отвечает требованиям рефлективности, симметрии и транзитивности (следствие неоднородности и анизотропности пространства), оно не может быть взято безотносительно времени и плотности, которые в неявном виде присутствует в каждой области пространства. Перенос отрезков или фигур параллельно своему положению вдоль замкнутого контура вызывает их постоянное самотождественное изменение, но в результате обхода контура конечная фигура совпадет с первичной. В пространстве отсутствуют малые поверхности и объемы (относительно измерителя), и перенос фигуры или мерного инструмента из одного пространства в другое вызывает изменение длины мерных инструментов (относительно статики) пропорционально напряженности внешнего поля данного пространства. Сумма же углов треугольника и на поверхности сферы, и в объеме всегда равна 2 π. Эта особенность исключает возможность определения разницы в геометриях. Отличительная особенность динамического пространства и образованного им пространства — детерминизм. Именно каузальность порядка причина-следствие определяется коэффициентом связности и золотым многообразием. Рассмотрим основные фигуры пространства. Все материальные образования одного ранга, кроме продуктов катастроф, стремятся приобрести форму сферы. Сферы одного пространства обладают следующими качествами: • все, сферы построенные вокруг отсутствующего единого центра, равны. Их эквипотенциальная поверхность состоит из бесчисленного количества ячеек, а радиус имеет бесконечную длину; • каждый отрезок исходит из точки и входит в другую точку. Однако их можно продолжить по прямолинейной поверхности сферы до исходящего отрезка и считать непрерывными; • сферы всегда ядра и на плоскости и в пространстве различаются по рангу. Сферы более «низкого» ранга могут считаться точками. Точка — это всегда материальная сфера, не имеющая центра. Точка — ядро, структура которого несоизмерима по рангу с пространством, в котором она находится, и влияющая на это пространство. Внешняя поверхность отграничивает ее от пространства. Точка всегда бесконечна вглубь. Точка на прямой или в пространстве и луч из нее — это отделение соизмеримой области пространства (внешняя часть образующегося луча) от несоизмеримой (части, устремленной к центру точки). Все точки одного ранга неравнозначны по количественным величинам всех качеств и в первую очередь по напряженности. Поэтому метрика координатных осей с центром в любой окрестности точки, кроме ядра, будет различной (относительно статического эталонного метра). Ячейка (две или более) — взаимосвязанные напряженностью собственного поля сферические структуры (ядра), несоизмеримые по размерам с расстояниями между ними, входящие в единую внешнюю эквипотенциальную нейтральную зону. Все пространство — «пена» взаимосвязанных первичных ячеек. Линия (прямая) — абстракция — последовательность расположенных в одном направлении несоизмеримых с пространством ячеек. Линия всегда дискретна. Дискретность обусловлена наличием бесконечных (вглубь) точек на ней. Непрерывной она может быть только мысленно. Поверхность (плоскость) — многообразие распространяющихся в двух направлениях дискретных ячеек. Объем — область, образованная состоянием взаимосвязанных ячеек, отграниченная от других областей своей нейтральной зоной. Существование нейтральных зон определенной напряженности обусловливает свойства каждого из тел
2.4. Геометрия золотых пропорций
Откуда пришли представления о делении отрезков в крайнем и среднем отношении, позволяющем получать золотое число Ф и образующие пропорцию, названную Леонардо да Винчи «золотым сечением», неизвестно. Ho в Древней Греции на основе золотого числа Ф = 1,618 получали ряд из 11 чисел посредством последовательного умножения базисной 1 на Ф (восходящая ветвь ряда) и делением базисной 1 на Ф (нисходящая ветвь ряда), имеющий название золотого ряда и бесконечный, при продолжении, в обе стороны:...; 0,034; 0,056; 0,090; 0,146; 0,236; 0,382; 0,618; 1,000; 1,618; 2,618; 4,236;... и т.д. (египетский ряд [28 ]). Каждое число этого ряда представляет собой иррациональную (бесконечную) последовательность цифр, округленных до 4 знаков. Каково собственное значение этих чисел, и к какой геометрии они относятся — неизвестно тоже, а потому числа эти стоят на обочине и геометрии и физики.
Дата добавления: 2014-11-29; Просмотров: 467; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |