Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

График 1. 9 страница




F = P = 3 mωω1m1/ 4 πR2ρ. (2.48)

В этой формуле:

F = Р − вес тела, т и т1 − масса тела и Земли, ρ − плотность пространства, ω − круговая частота пульса­ции гравитационного поля тела, ω1 − частота пульса­ции гравиполя Земли равная: ω = v/R, R − радиус Зем­ли.

В уравнении (2.48) неизвестна только собственная частота пульсации ω гравиполя рассматриваемого тела. Преобразуем (2.48) относительно ω и упростив его, за­пишем:

ω = к, (2.48')

ρ − плотность тела, к − коэффициент равный 2,253·10-4 г-1с-1.

Возьмем несколько тел у поверхности Земли радиу­сом 25 см, выпишем из [43] их удельный вес, вычислим частоту пульсации гравитационного поля и соответствующую ей гравитационную «постоянную». Занесем полученные результаты в табл. 6.

Отметим, что период незатухающей самопульсации для тел одного радиуса, но разной плотности оказыва­ется достаточно продолжительным и уменьшается примерно с 74 минут для воды и натрия до 3 минут для золота и иридия.

Очень важным становится то обстоятельство, что не масса или радиус определяют период самопульсации тел, а именно период пульсации (естественный или искусственный) определяет его массу. Монотонное возрастание (замедление) периода пульсации без изменения радиуса обусловливает монотонное и пропорциональное изменение веса тел (табл. 6.). Но отношение плотности ρ к частоте собственной пульсации ω: ρ/ω для всех тел одного радиуса, находящихся на одном горизонте эквипотенциальной поверхности (например, гравиполя Земли), остается неизменным.

Следовательно, величина массы тела в естественных условиях пропорциональна его самопульсации и эта не отраженная в формуле (2.23) пропорциональность создавала впечатление того, что именно посредством массы тела притягиваются друг к другу, скрывая истинный механизм этого притяжения — пульсирующее взаимодействие взаимно гравитирующих тел.

По формуле (2.47) определим, какова величина гравитационной «постоянной», присущей каждому телу и выпишем в таблицу 6. Выясняется, что при одинаковом радиусе всех тел гравитационная «постоянная» тоже монотонно возрастает с возрастанием массы каждого тела. Это так же свидетельствует о том, что гравитационная «постоянная» как фундаментальная физическая величина в природе отсутствует. Вместо нее наличествует размеренный гравитационный коэффициент, имеющий индивидуальную количественную величину для каждого тела, изменяющийся с изменением его радиуса.

Можно отметить, что и отношение возрастающей удельной массы тела к соответственно возрастающему коэффициенту G остается неизменным (табл. 6 последний столбец). К тому же параметры ρ, ω, G оказываются взаимно-пропорциональными и, зная, например, удельную плотность ρ′ и частоту ω одного из тел можно, не обращаясь к другим параметрам, получить по формуле (2.47) его гравитационный коэффициент G, а по пропорциям:

ω = ρω′/ρ′; G = G′ρ/ρ′,

величину параметров ω и G других тел, для которых известна их плотность. Например, зная что для бериллия ρ′ = 1,84, а ω′ = 4,145·10-4 (табл. 6) определяем ω Земли:

ω′ = ω′ρ/ρ′= 4,145·10-4·5,52/1,84 = 1,24·10-2 сек-2.

А это свидетельствует о том, что изменение любого из параметров произведения MG (например, G) одного те­ла сопровождается аналогичным пропорциональным изменением другого параметра (М), что и придает дан­ному произведению свойства инварианта.

Таблица 6.

Тела ρ ω 10-4 τ мин ρ/ω 103 G 10-8 ρ/G 107 Ρ 104
Вода 1,00 2,253     1,21 8,26 6,5450
Натрий 1,01 2,275 73,3   1,23 8,21 6,6104
Бериллий 1,84 4,145 40,2   2,23 8,25 12,043
Алюминий 2,70 6,083 26,9   3,27 8,26 17,671
Ванадий 5,96 13,43 12,4   7,22 8,25 39,008
Железо 7,87 17,73 9,40   9,53 8,26 51,509
Медь 8,93 20,12 8,28   10,8 8,27 58,447
Свинец 11,3 25,46 6,55   13,7 8,25 73,958
Ртуть 13,6 30,64 5,44   16,5 8,24 89,012
Золото 19,3 43,48 3,83   23,4 8,25 126,31
Иридий 22,8 51,37 3,24   27,6 8,26 149,23

 

К этому выводу можно прийти и другим путем, опре­деляя пропорциональное изменение параметров М и G по высоте над поверхностью Земли [10,44]. В качестве примера рассмотрим как изменяется с высотой гравита­ционный коэффициент Земли G = 6,67·10-8 см3/гс2 и ее масса М = 5,98·1027 г. Их произведение MG широко ис­пользуется в астрономии и имеет, как уже говорилось, собственное название «геоцентрическая постоянная». В соответствии с методом коэффициентов физической размерности параметры М и G при измерении их вели­чины в космосе над поверхностью Земли описывается инвариантами:

G2/R = 6,97·10-24const, (2.49)

RM2 = 2,28·1062 − const', (2.50)

где R - расстояние от центра Земли до той области космического пространства, в которой определяется ко­личественную величину М или G. Предположим, что нам надо определить, чему равны М, G и MG на рас­стоянии трех R' = 19,1 тыс. км и пяти радиусов Земли R" = 31,9 тыс. км. По (2.49) находим величину G на этих расстояниях:

G1 = √(6,97·10-24·1,91·109) = 1,15·10-7,

G2 = √(6,97·10-24·3,19·109) = 1,49·10-7.

Вычисляем по (2.50) величину М на тех же расстояни­ях:

М1 = √(2,28·1062/19,1·108) = 3,45·1027,

М2 = √(2,28·10б2/31,9·108) = 2,671027.

Перемножаем полученные величины и получаем гео­центрическую постоянную, одинаковую для обоих рас­стояний:

1 = 1,15·107·3,45·1027= 3,99·1020,

G2M2 = 1,49 ·10-7 ·2,67 ·1027 = 3,98·1020.

Следовательно, произведение MG действительно с расстоянием остается неизменным и справедливо носит название геоцентрической постоянной.

В то же время коэффициент G для каждого тела ока­зывается величиной индивидуальной, пропорциональ­ный плотности (а следовательно, пропорциональный и массе) и вычисляется для всех тел по формуле (2,47), в частности для Земли он оказывается равным G = 6,6510-8.

Таким образом, при взаимодействии тел количествен­ные величины вещественных свойств одной системытела изменяются пропорционально изменению величины любого из ее свойств, включая и те из них, которые, как M и G, различным соображениям были постулирова­ны неизменными.

Приведу из [10] описание эксперимента, способного показать возможность эмпирического нахождения самопульсации на примере любого из указанных в табли­це 6 тел радиусом в те же 25 см (например, железного). Необходимо иметь в виду, что пульсирующее тело со­вершает сложное колебательное движение, складываю­щееся из нескольких волновых движений различной ам­плитуды и в различных направлениях по поверхности ядра и потому замеры пульсации надо производить в различных точках поверхности шара. Опишем пример­ную схему эксперимента: «Возьмем стальное ядро-шар 1 радиусом R = 25 см и положим на упоры 2 (рис. 19). Закрепим на нем вертикально два штыря 3, 4. Длина штыря 3 равна ~ 10 см, а штыря 4 на порядок больше. На свободных концах штырей укрепим подвижные зер­кала 5, 6. Недалеко от ядра расположим источник света 7, лучи от которого могут падать на зеркало 6 и отра­жаться снова к источнику.

 

Рис. 19 а, б

Между источником 7 и зеркалом 6, под углом 45о к прямой, соединяющей их, закрепим полупрозрачное зеркало 8, разделяющее луч света на два луча, один из которых идет к зеркалу 6, а другой к зеркалу 5. Отражаясь от этих зеркал, они через полупрозрачное зеркало 8 попадают в интерферометр Майкельсона 9. Эксперимент по схеме практически аналогичен известному опыту Майкельсона-Морли по определению движения Зем­ли относительно эфира.

Как уже говорилось, все тела пульсируют и а потому диаметр металлического шара систематически меняется с определенной частотой. С тем же периодом будет из­меняться расстояние между зеркалами 5 и 6. Это изме­нение и будет зафиксировано интерферометром 9. Со­гласно таблице 6, период пульсации стального шара R = 25 см составит около 9,4 минут, что и будет подтвер­ждено экспериментом. Сам эксперимент достаточно прост и не требует для проведения больших средств и времени.

Таким образом, наличие угловой скорости в структу­ре параметра G закона притяжения свидетельствует о том, что данный параметр не является фундамен­тальной постоянной, а отображает пропорциональную зависимость частоты собственной пульсации при­тягиваемого тела от его плотности.

 

2.11. Экспериментальное нахождение

гравитационной «постоянной»

 

Вопрос об экспериментальном нахождении гравитационной «постоянной» G возник сразу же после того, как И. Ньютон нашел закон всемирного тяготения:

F = GMm/R2, (2.51)

где F – сила притяжения между телами, G – гравитационная «постоянная», M и m – массы тел, а R – расстояние между центрами масс.

Отметим, что сам И. Ньютон не считал параметр G величиной постоянной [2]. Параметр G вводился им в качестве гравитационного коэффициента, физическую сущность которого еще необходимо было выяснить. И в этом особенно проявился гений И. Ньютона.

Первым, кому удалось эмпирически получить в 1798 году количественную величину G, был английский ученый Г. Кавендиш. Опираясь на закон тяготения, все параметры которого постулируются неизменными, ему предстояло найти способ экспериментального выделения свойства G из них, таким образом, чтобы на тело, подвергаемое эксперименту, не действовала сила притяжения к Земле. Т.е. сделать так, чтобы параметру G обеспечивалась независимость (?? - А.Ч.) внешнего гравитационного поля. И Кавендиш нашел решение задачи, сконструировав крутильные весы, на которых взаимодействовали между собой два груза, находясь под одинаковым воздействием гравиполя Земли, и тем самым воздействие гравиполя для них как бы исключалось. После получения количественной величины G = 6,67·10-8 см3/гс2, последователи И. Ньютона, постулировали ее постоянной величиной.

Понятие «гравитационная постоянная» ¾ логически не однозначное понятие. За этой формулировкой могут скрываться как минимум три различных подхода к ее количественной значимости:

1. — это одинаковая по количественной величине G для всех тел.

2. — это различная количественная величина G для всех тел, не изменяющаяся во времени (абсолютная во времени) и зависящая от их размеров. Такое возможно в том случае, если сила притяжения тел к Земле постоянна во времени.

3. — это различная для всех телпо количественной величине еще неизвестная гравитационная характеристика (степень удельного гравитационного заряда, например), изменяющаяся во времени и зависящая от их размеров.

Третий подход ставит под сомнение корректность формализации закона притяжения (2.51), поскольку в нем появляется скрытый параметр ¾ неизвестная гравитационная характеристика (удельные гравитационные заряды) взаимодействующих тел.

Из различного определении понятия «гравитационная постоянная» следовало, что для нахождения количественной величины G можно использовать различные экспериментальные методы. Поскольку, как уже говорилось, классическая механика предполагает неизменность во времени напряженности гравитационного поля планеты, а, следовательно, и силы притяжения тел ею, то была выбрана одна формулировка (одинаковая количественная величина коэффициента G для всех тел). А потому единственным способом экспериментального определения количественной величины G становился способ, предложенный Кавендишем.

Однако многочисленные, тщательно выполненные эксперименты, проведенные со времен Кавендиша до настоящего времени по нахождению количественной величины гравитационной «постоянной», практически не улучшили результатов им полученных. И на сегодня она известна с точностью до трех знаков G = (6,672±0,004)·10-11 Н·м2/кг2 [2]. Низкая точность нахождения важнейшего физического параметра требует анализа порождающих ее физических причин.

Неоднозначность понятия G в свое время не проверялась экспериментально, и может, по мнению авторов, оказаться причиной низкой точности результатов экспериментов. Другая причина ¾ возможное изменение напряженности гравиполя планеты во времени, тоже не прошедшее экспериментальной проверки. Остановимся на них подробнее.

Предположим, основываясь на третьем подходе, что каждое тело, включая небесные тела, имеет собственный удельный гравитационный заряд (еще неизвестная гравитационная характеристика). Тогда гравитационный коэффициент G (применим, вслед за И. Ньютоном, это название) оказывается произведением различных по величине удельных гравитационных зарядов взаимодействующих тел. И как произведение не одинаковых зарядов взаимодействующих тел может в каждом случае иметь различную величину. Введем этот коэффициент как удельный гравитационный заряд, обозначив индексом з (заряд), тогда уравнение (2.51) приобретет следующий вид:

F = Mзmз1/R2, (2.52)

где:

з·з1 = G, (2.53)

и уравнение (2.52) становится полным аналогом закона Кулона. Но закон Кулона описывает взаимодействие равновеликих электронов е1 и е2; е1 = е2, каждый из которых есть произведение удельного электрического заряда j на его массу mе:

j·mе = е,

и по аналогии должно иметь место:

з1m = Э1, (2.54)

где Э1 – обозначает тело, как гравитационный электрон. Но в уравнении (2.53) произведения:

зМ ≠ з1m, (2.55)

не равны между собой, и при таком раскладе уравнение (2.52) становится бессмысленным, поскольку массы Земли и тела в нем несопоставимы и электрическая двойственность в притяжение тел как бы отсутствует. Но не будем спешить и отметим, что неоднозначность понятия G, в классическом понимании, обусловливает возможность достаточно простой эксперимен-тальной проверки правильности и (2.53), и (2.54), и (2.55) по меньшей мере, двумя способами. Опишем их:

• Первый эксперимент: возьмем несколько различных тел и ежедневно, примерно в одно и тоже время, будем взвешивать их на весах с точностью пять — шесть знаков в продолжении как минимум полугодия. Если вес тел за это время остается неизменным, то напряженность гравиполя планеты не меняется и вместе с ней не меняется и G. Если вес тел меняется в одинаковой пропорции, то меняется напряженность гравиполя Земли, но величина G остается неизменной. Если же вес тел меняется в различной пропорции (пусть даже в пятом — шестом знаке), это является следствием изменения и напряженности гравиполя Земли, и различной величины зарядов у каждого тела, и коэффициента G.

• Второй эксперимент практически повторяет первый: взять несколько пар различных тел в такой пропорции, чтобы тела из одного материала различались по весу на полтора-два порядка, и взвешивать их в течение того же времени. Если величина гравитационного заряда каждого тела зависит и от его свойств (например, от объема), то величина заряда у тел из одного материала неодинакового объема тоже будет меняться на разную величину (где-то в седьмом, восьмом знаке) что и обусловит изменение G.

Поскольку эмпирическая суть идеи достаточно проста, то для ее выяснения в НПО «Квант-Элемет» был поставлен эксперимент по длительному ежедневному (кроме выходных дней) наблюдению за изменением веса четырех твердых тел из не намагничивающихся материалов во времени (т.е. по третьему варианту) на лабораторных весах марки ВЛ-500, обеспечи-вающих точность взвешивания в пять знаков (два знака после запятой). Естественно, что до проведения эксперимента отсутствовало представление о том, будет ли изменяться вес тел, каков характер этого изменения, его порядок, продолжитель-ность, корреляция по отношению к возможному изменению гравиполя планеты и т.д. На начало эксперимента, образцы имели следующие параметры (таблица 7):

Таблица 7.

№ п⁄п Материалы Размер мм Р, гр.
       
  Дубовый брусок 95х50х23 103,02
  Брусок из полимера 95х50х23 128,51
  Брусок дюралевый 74х48х21 195,79
  Свинцовый цилиндр 70; ø20 202,73

Достижение высокой точности измерения не предполагалось. Целью эксперимента было: в течение годового периода времени определить экспериментально на качественном уровне: изменяется ли вес указанных тел, тенденцию и примерный порядок этого изменения, если оно имеется.

Эксперимент продолжался в течение двух лет, и результаты оказались в полном соответствии с предположениями, высказан-ными в варианте третьего подхода. Количественные величины изменения веса отображены в таблице 8.

Таблица 8

  Размер Макс. Миним.  
п⁄п Материалы мм Р, гр. Р, гр. Р, гр.
           
  Дубовый брусок 95х50х23 104,89 98,26 6,63
  Брусок из полимера 95х50х23 128,79 127,78 1,01
  Брусок дюралевый 74х48х21 196,07   1,06
  Свинцовый цилиндр 70; ø20 203,1 202,07 1,03

Вес всех тел (а, следовательно и их масс) изменялся во времени в различных пропорциях, что с одной стороны свидетельствует об изменении напряженности гравиполя Земли, а с другой о том, что каждое тело имеет изменяемый по величине и во времени удельный гравитационный заряд, и, следовательно, величина G не является постоянной величиной (что она систематически и демонстрирует).

Следует отметить не мгновенную реакцию тел на изменение внешнего гравиполя. Наблюдается неодновременное начало изменения веса различных тел. Создается впечатление, что неодновременность, в какой то мере связана с плотностью тел. Бывают моменты, когда вес, например, свинца или дюраля еще возрастает, а дерева или оргстекла уже уменьшается. И только через день или два плотность их тоже начинает изменяться. Случается и наоборот.

Выяснилось еще одно очень важное обстоятельство: диаграмма изменения веса как бы дрейфовала на графике, отображая место нахождения Земли на орбите (т.е. по изменению веса тел в течение года еще во времена И. Ньютона можно было приблизительно отслеживать орбитальное движение планеты, не заглядывая при этом на небо). А, следовательно, изменение напряженности гравиполя Земли напрямую связано с изменением гравиполя той области Солнечной системы, в которой находится планета.

Таким образом, результаты экспериментов по определению изменения веса тел во времени показали нестабильность гравиполя Земли, и ее влияние на изменяемость веса тел, как во времени, так и в пропорциональном отношении. А это свидетельствует о том, что величина G не является гравитационной постоянной, и более того — она является «составной», как это показано в (2.53), и включает в себя удельные гравитационные заряды Земли и притягиваемого тела. И, следовательно, уравнения (2.52)-(2.55) имеют право на существование.

Метод прямого взвешивания тел во времени позволяет непосредственно определять величину гравитационного коэффициента G и проводить наблюдения его дрейфа, обусловленного изменением веса тел. На графиках 1 и 2 отображено изменение коэффициента G по каждому телу в течение трех месяцев, приведенное на 01.02. 2006 к величине 6,67323·10-11 Н·м2/кг2. График 1 отображает изменение коэффициента деревянного бруска – G дер., бруска из оргстекла – G орг., график 2 – бруска из дюраля – G дюр., и свинцового цилиндра – G свин. Диаграммы изменения гравитационного коэффициента показывают, что каждое тело, гравитационно взаимодействующее с планетой

обусловливает свою количественную величину G, дрейфующую во времени. Ежедневное изменение G практически не выходит за пределы четвертого знака и не хаотично. G дрейфует у дерева и оргстекла в более широких пределах, чем у дюраля и свинца. Траектория дрейфа отображает траекторию движение планеты по орбите и возмущения, от действия других тел Солнечной системы, достигая экстремального значения в районах афелия и перигелия.




Поделиться с друзьями:


Дата добавления: 2014-11-29; Просмотров: 454; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.