КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
График 2
Использования метода изменения веса во времени позволяет получать более точные значения G для тела из любого материала, что невозможно методом Кавендиша. Эта невозможность — следствие конструктивных особенностей крутильных весов. Поскольку напряженность гравиполя Земли во времени меняется, то происходит неодновременное изменение масс взаимодействующих тел, сопровождаемое изменением силы их взаимного притяжения. Перемещение эталонных тел на крутильных весах (при использование рычажных весов с регулируемым плечом) может резко и значительно изменять результаты замеров гравитационной «постоянной» и потому последствия исследований гравитационного коэффициента с применением крутильных весов не однозначны. Похоже это основная причина низкой точности экспериментального нахождения коэффициента G. Чтобы разобраться с этим явлением рассмотрим схематично конструкцию крутильных весов и что происходит с пробными телами, когда напряженность внешнего гравиполя меняется или меняется расстояние между ними? Простые крутильные весы представляют собой коромысло, подвешенное на упругой нити за центр. К концам коромысла закрепляются или подвешиваются, два пробных тела (в виде шариков), из одного и того же материала. Напротив их на определенном расстоянии (иногда изменяемом) располагают два эталонных массивных шара, которые притягивают пробные шарики, закручивая нить. Когда пробные шарики стабилизи-руются, эталонные шары убираются, нить раскручивается и по углу раскручивания определяется сила, с которой отклонилось коромысло. А дальше производится расчет по закону И. Ньютона Отметим главный недостаток этого способа: Это опосредственный способ нахождения G. Он скрывает воздействие на эталонные и пробные тела изменяющейся напряженности гравитационного поля. И поэтому крутильные весы слабо отслеживают изменения внешней напряженности, а удаление эталонного тел или их перемещение обусловливают возможность последующего случайного и не пропорционального изменения взаимодействия, поскольку эффект взаимодействия исчезает не сразу. А поскольку масса эталонных тел во многие сотни раз превышает массу пробных и плотность пробных тел, под воздействием гравиполя планеты, изменяется быстрее плотности эталонных, то итогом таких исследований может стать соответствующее (практически ежедневное) изменение величины гравитационного коэффициента в четвертом или даже в третьем знаке. Значительное влияние на показания весов оказывает и перемещение масс вблизи весов, и в первую очередь экспериментатора. Его масса, более чем на порядок превышающая эталонные массы, оказывает влияние на показание весов даже тогда, когда экспериментатор находится от них на расстоянии нескольких метров. Когда же, для ускорения эксперимента, начинают несколько раз в день передвигать эталонные тела то, приближая то, удаляя их от тел пробных, гравитационный коэффициент начинает меняться чуть ли не каждое передвижение и подчастую в третьем знаке. Естественно, что свойства Земли в таком режиме меняться не могут и поэтому исследованиям, в которых почти ежедневно у гравитационной переменной меняется четвертый, а то и третий знак доверять сложно. Похоже, единственным способом измерения гравитацион-ного коэффициента, пожалуй, правильнее сказать гравитационного свойства, является метод прямого взвешивания во времени. Когда тело взаимодействует только с Землей, изменение его веса (масы) отслеживает аналогичное изменение притяжения Земли и на этот процесс не могут оказывать влияния никакие посторонние массы. Именно этим способом производились взвешивание четырех пробных тел. Рассмотрим, к примеру, «результаты измерения гравитационной постоянной на установке с крутильными весами», полученные группой О. Карагиоза за период с 4 декабря 1990 года по 23 декабря 1991 года [41]. В исследование, как следует из описания, использовался опыт ранее проведенных экспериментов по определению гравитационной «постоянной». Описание исследования содержит результаты измерений, которые можно сопоставить с результатами, полученными при взвешивании четырех тел. Других же подробных аналогичных исследований, проведенных в последнее время, обнаружить не удалось. Но это не существенно, поскольку ошибки в предшествующих наблюдениях с использованием крутильных весов достаточно стандартны. Для уменьшения объема работ используем материалы исследования за февраль-апрель 1991 года, поскольку последующие данные (до сентября) не очень отличаются от результатов этого месяца. Приведем описание постановки эксперимента из работы [41]: «Эксперименты по определению гравитационной постоянной G в настоящее время достигли высокого совершенства. Не смотря на это за последние несколько десятилетий не удалось достичь существенного прогресса в повышении точности. В наиболее тщательно выполненных за последние годы экспериментах погрешность определения G составляет примерно величину 1·10-4. Столь низкая точность определений важнейшей физической константы не может удовлетворять потребности современной физической науки. Отсутствие прогресса в повышении точности измерения при техническом совершенствовании экспериментальных установок ставит вопрос о наличии какого-то внешнего, ускользающего от внимания экспериментаторов фактора, влияющего на результаты измерений (здесь авторы исследовании совершенно правы – Авт.). Выяснение природы этого фактора может способствовать прослеживанию величины флуктуаций результатов измерений величины G на длительных отрезках времени с целью выявления ритмов или каких-либо других закономерностей. Такие исследования проведены на установке с крутильными весами. … Определение G осуществляется по величине периода колебания коромысла с закрепленными на его концах пробными массами (около 1,5 г), подвешенного на тонкой нити в вакуумной камере. Вне этой камеры располагаются эталонные массы – шары весом около 4 кг. (Итого вес эталонных тел превышают вес пробных почти в три тысячи раз – А.Ч.) Период колебания коромысла – около получаса. В настоящем отчете анализируются результаты, полученные с декабря 1990 г. по декабрь 1991 г. в ходе практически непрерывных измерений. С 4.12.90 по 27.12.91 установка работала в режиме попеременного измерения G при трех положениях эталонных масс, когда минимальное расстояние R между центрами эталонных и пробных масс составляли 6,64, 9,43, 19,33 см(курсив наш – Авт.). Величина G определялась в результате обработки методом наименьших квадратов данных, полученных на этих трех расстояниях». Описание крутильных весов, используемых исследователями, показывает, что они выполнены по стандартной методике. Т.е. изложенные выше нюансы изменения напряженности гравитационного поля Земли не принимаются во внимание. Поэтому следует ожидать, что результаты экспериментов будут достаточно хаотичны. Построим график 3 отображающий изменение гравитационной переменной полученный на крутильных весах за февраль 1991 года (диаграмма G) и на обычных за февраль 2006 г. (диаграмма G1). Диаграмма G графика 3 фиксирует почти ежедневное хаотичное изменение четвертого знака (1·10-4). А диапазон изменений лежит в пределах третьего знака. Естественно, что при усреднении диапазон изменений передвинется на четвертый, а возможно и на пятый знак. Никакого изменения напряжения гравиполя планеты не отслеживается. Его забивает хаос случайных взаимодействий вызванных вариациями пробных масс и передвижений экспериментаторов.
График 3. Структура диаграммы G1, полученная по результатам завешивания свинцового цилиндра в феврале 2006, совершенно другая. Расчет величины G1 производился аналогично методу использованному О. Карагиозом. Никакого усреднения результатов не производилось. Коэффициент G1 хотя и включает две величины, зз и зт здесь рассматривается в классическом понимании: G1 = зз · зт, где зз – гравитационный коэффициент Земли, а зт – гравитационный коэффициент тела. На диаграмме G1 графика 3 хаотичность исчезла, появилось достаточно медленное, последовательное изменение гравитационного коэффициента ¾ дрейф, несколько напоминающей синусоиду. Диапазон изменений G1, продолжающийся до конца месяца, изо дня в день не выходит за пределы четвертого знака. И только в конце месяца начинаются дрейфовые отклонения в четвертом знаке. Но вот с сентября группа О. Карагиоза стала проводить эксперименты при неизменном положении эталонной массы, и картина взаимодействий значительно изменилась (октябрь, график 4). По первым замерам появился дрейф диаграммы G, но не уменьшения, как на весах (диаграмма G2), а возрастания гравитационного коэффициента. Динамику последующих замеров частично График 4. отображает диаграмма G1 (тоже хаотичная). Вырежем из графика 9 диаграммы G и G2 и сопоставим их на графике 10. График 5. Дрейф диаграмм G и G2, как следует из графика 5, происходил в противоположных направлениях и отклонения за месяц составили примерно одну и ту же величину. А, следовательно, и на крутильных весах можно отслеживать изменение веса тел во времени. Вывод: Гравитационная «постоянная» имеет различную количественную величину для всех тел и изменяется с изменением гравитационного поля Земли.
3. Механика пульсирующего взаимодействия 3.1. Законы механики
Выше уже упоминалось, что теоретический аппарат классическая механика считается окончательно разработанным, и никаких оснований для сомнения в этом не существует, поскольку отсутствуют серьезные механические эксперименты, противоречащие теории. Но есть повод усомниться в столь категорическом утверждении. О слабости и неотработанности, этого аппарата свидетельствует, например, очень простенькая игрушка — китайский волчок, называемый иногда волчком Томпсона. Предполагается, что впервые его запустил английский физик Томпсон. Волчок состоит из пластмассового пустотелого шарика, одна сторона которого срезана почти на пятую часть диаметра и на ее месте находится "ножка", за который волчок приводится во вращение (рис 20 а,б). Рис. 20 а, б Эта детская игрушка весьма и весьма любопытна и знаменита. Ее движение изучали самые именитые физики XX века, включая Н. Бора и В. Паули и... так и не смогли объяснить. А вращение волчка действительно оригинально. Если его закрутить за ножку, то первое время он крутится как обыкновенная юла. Затем понемногу заваливается на бок, упирается ножкой в поверхность и, переворачиваясь, встает на нее, продолжая свое вращение. Причем самое существенное, что момент вращения остается тем же, который был получен при его закручивании. А механически это означает, что в какой-то промежуток времени имеет место как бы останов волчка и начинается его вращение в противоположном направлении, что, по классической механике, невозможно. Для примера возьмите карандаш, начните вращать его в вертикальном положении, допустим по часовой стрелке. Не прекращая вращения, переверните его так, чтобы нижний конец оказался наверху, и убедитесь, что верхний конец вращается в этом положении против часовой стрелки. Момент вращения изменился. А волчок при перевороте его сохраняет. И непонятно, как и почему у волчка сохраняется это вращение? И еще: Откуда берется сила, поднимающая волчок? Ведь для подъема на ножку надо преодолеть силу веса, или, что одно и тоже, заменить силу притяжения на силу отталкивания. Возможность же существования силы гравитационного отталкивания не признается классической механикой. Да и волчок уж очень простой прибор, чтобы считать антигравитацию причиной его переворота. Где-то в конце 60-х годов движение волчка, как полагают, удалось математически описать Я. Смородинскому. (Не объяснить, а выразить системой взаимосвязанных уравнений, что далеко не одно и то же. Поведение, например, вращающегося гироскопа до сих пор не может объяснить ни один физик, а математически описать во всех подробностях — пожалуйста.) Позже аналогичные описания повторяли и другие исследователи (Карапетян А.В., Маркеев А.П....) Вот как Я. Смородинский объясняет поведение китайского волчка на страницах популярного журнала "Наука и жизнь" (№7,1969.) "На обычный волчок действуют две силы: сила тяжести, приложенная к центру тяжести волчка, и реакция опоры. Пара сил, как это полагается по законам механики, поворачивает ось волчка, и он, как говорят, прецессирует — ось волчка все время изменяет свое положение в пространстве. Мы можем доказать следующее утверждение: если каким-либо образом увеличить скорость прецессии, то центр тяжести волчка поднимается. Доказать это утверждение можно от обратного, Предположим, что мы увеличим скорость прецессии, а центр тяжести в результате опустится. Тогда, как это видно из рисунка 20 а увеличится момент сил действующих на волчок (момент сил равен произведению силы F на длину перпендикуляра, опущенного из центра тяжести О на вектор силы, в данном случае на вертикаль — плечо силы). Но тогда скорость прецессии должна еще больше возрасти. А если скорость возрастет, то, согласно сделанному предположению, центр тяжести волчка еще больше понизится, и скорость прецессии возрастет еще больше. Ясно, что конец истории будет печальным: волчок упадет. Отсюда вывод: наше предположение неверно, и при увеличении скорости прецессии центр тяжести волчка не опускается, а поднимается (курсив везде мой — А. Ч.). Теперь можно вернуться к волчку Томпсона. Когда мы запускаем такой волчок, то в отличие от детской юлы он касается пола не одной и той же точкой своего сферического донышка, а перекатывается так, что точка касания волчка с полом "вычерчивает" на волчке кусочек спирали. Посмотрим, как ведет себя другой конец волчка — его ножка. Если бы волчок Томсона вращался, как обычная юла, касаясь стола все время одной и той же точкой, то ножка описывала бы окружность с постоянной скоростью — волчок прецессировал бы. Из-за того, что волчок Томсона перекатывается па столу, ножка волчка повторяет движение точки касания донышка и скорость прецессии возрастает. А тогда центр тяжести волчка должен подняться. Посмотрев на рисунок 20 б, можно понять, что центр тяжести волчка лежит немного ниже центра шарика: у шарика срезана верхушка. Поэтому, когда волчок переворачивается на бок, центр тяжести его оказывается выше. Продолжая вращаться вокруг горизонтальной оси, волчок переворачивается на ножку, центр тяжести занимает самое высокое положение, и волчок спокойно продолжает вращаться. Значит единственное условие, которому должна удовлетворять форма волчка состоит в том, что при его переворачивании центр тяжести должен все время подниматься. В заключение проделайте с волчком поучительный опыт (мне о нем рассказал Oгe Бор, сын Нильса Бора) Насыпьте на пол или на стол тонкий слой пудры (мела или муки) и запустите волчок. После того, как волчок перевернулся, осмотрите его. Вы увидите нарисованную пудрой линию, по которой двигалась точка касания волчка с полом или столом. Линия эта закручивается спиралью, но в одном месте она начинает раскручиваться в обратную сторону. Попробуем объяснить и это явление. Закон сохранения количества движения требует, чтобы волчок вращался в одну и ту же сторону, как в исходном положении, так и в перевернутом. Пусть, например, он начал вращаться по часовой стрелке (если смотреть на него сверху) — так он будет вращаться если вы его запустили правой рукой. Если бы, не переставая вращаться вокруг своей оси, волчок перевернулся, то в перевернутом состоянии он уже вращался бы против часовой стрелки. Значит, для того, чтобы все было по законам физики, волчок,в какой-то момент должен прекратить вращаться вокруг оси, проходящей вдоль "ножки", а затем завращаться в обратную сторону. Это произойдет тогда, когда волчок будет лежать на боку и вращаться вокруг оси, проходящей через его бока". Имеются большие сомнения в корректности полученного Я. Смородинским математического описания и объяснения механизма вращения китайского волчка, поскольку в процессе его движения включается останов вращения и продолжение вращения волчка после останова в противоположном направлении. Можно считать, что теоретическое объяснение механизма переворота волчка Томпсона отсутствует. И это не единственный необъяснимый эксперимент в классической механике. Эксперименты Ю.И. Крюкова, В.И. Чичерина, Р.И. Романова, В.П. Селезнева, А.И. Вейника, Ю.Г. Белостоцкого, С. Маринова и многих, многих других авторов (некоторые из них будут описаны ниже) не находят объяснения. Инерцоиды В.Н. Толчина и его последователей до сих пор отвергаются, поскольку тоже остаются необъяснимыми, что само по себе свидетельствует о неблагополучии в классической механике с теорией. Но обо всем по порядку. Сейчас же вернемся к законам классической механики и рассмотрим возможность их расширенного понимания. Кстати, о неполноте этих законов неоднократно упоминала в своих работах Е. Блаватская. В основу современной физики положены четыре закона механики Ньютона: закон инерции, закон импульса, закон взаимодействия тел и закон всемирного тяготения. Особенность их заключается в том, что описания процессов единой природы производится по законам, между которыми отсутствует какая бы то ни было связь. Они полностью самостоятельны и независимы. И хотя имеются рассуждения о том, что первый закон, в общем-то, можно вывести из второго, вывод этот сопровождается постулированием потери "удерживаемым в состоянии покоя" телом как минимум двух своих свойств F и g (что возможно в математике, но невозможно в природе). А, как уже говорилось, постулирование отсутствия какого либо свойства у тела равнозначно отсутствию самого тела. То есть тело превращается в математическую фикцию. Закон, в котором формулируется поведение тела-фикции, не может быть корректным, а отсутствие связи его с другими законами свидетельствует о формальном соединении их в одну систему. Приведем формулировку этих законов в той записи, в которой они изложены в «Математических началах натуральной философии» [2], и коротко проанализируем их: Первый закон (аксиома): «Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние». Математическая запись закона (отметим, что математическая формализация закона произведена не самим Ньютоном, но является на сегодня общепризнанной.) [11]: а = 0 если Fрез. = 0, (3.1) где Fpез. – векторная сумма всех сил, действующих на тело, а – ускорение тела. (Полагаю, что обозначение а, как и название, некорректны. Мы в законе имеем дело не с ускорением, а с напряженностью гравиполя g, которая имеет ту же размерность и наблюдается нами как ускорение а.) К тому же математическая формализация (3.1) не соответствует содержанию закона. В ней отсутствуют какие бы то ни было признаки тела, находящегося в некотором состоянии и естественно, что свойства этого "ничего" можно приравнивать 0. Но тогда записанные равенства есть безадресная, ничего не отображающая математическая абстракция. Кроме того, как отмечает И. Горячко [45]: «Несмотря на простоту формулировки, первый закон неявно вводит в обращение большое количество объективных и субъективных принципов построения классической механики как теории взаимодействий: • принцип существования материи как вещества (наличие тела и окружающей среды), (добавлю — вещественной – А.Ч.); • принцип инерции (свойство тела находиться в состоянии покоя или равномерного прямолинейного движения в отсутствии действия на него внешних сил); • принцип относительности [связанный с возможностью определения состояния тела по отношению к другому телу, к самому себе или к системе отсчета в зависимости от скорости движения (эти два принципа, инерции и относительности, в природе отсутствуют. Они следствие постулатов классической механики.— А.Ч.)]; • принцип причинности (связанный с возможностью определения состояния тела в каждый последующий момент времени); • принцип равномерно текущего времени и изотропности окружающей среды (за равные промежутки времени тело при равномерном движении проходит равные расстояния); • принцип взаимодействия (изменения состояния тела возникают не из ничего, а только в результате его взаимодействия с другими телами или окружающей средой); • принцип сохранения телом постоянной массы в состоянии покоя или равномерного движения. Нетрудно заметить, что первый закон не предусматривает каких-либо ограничений по скорости движения тела (и не оговаривает неизменности массы тела – А. Ч.). И все-таки нельзя считать, что формулировка этого закона является исчерпывающей. Действительно, достаточно лишь указать на возможность движения тел по идеальной окружности, чтобы это утверждение стало вполне очевидным». И хотя абстрагирования в законе достаточно для отображения состояния тоже абстрактного тела-точки, закон все же оперирует не с фантомными образованиями. Когда же приходит время, использовать его по отношению к реальному телу, допустим при воздействии на это тело с некоторой силой, в математической формализации данного тела должны быть подставлены именно те параметры, которые отображают скомпенсированные внутренние взаимосвязи (инварианты) именно данного тела. Как показано методом КФР, скомпенсированность определенных свойств тел отображается либо инвариантами, либо формулами. Поскольку определяется сила в момент воздействия на тело, а, следовательно, и сила сопротивления тела этому воздействию, необходимо знать, какой силой «обладало» это тело до воздействия на него. Точнее, с какой силой тело взаимодействовало с окружающим веществен-ным пространством. Знание уравнения взаимодействия тела с эфирным пространством становится тем основанием, которое составляет структуру I закона механики. Естественно, что в это уравнение должны входить те параметры, которые включает в себя I закон механики: масса и напряженность гравитационного поля самого тела. Определяем их, опираясь на параметры железного шарообразного тела радиусом 25 см из таблицы 6: т = 525 г., G = 9,53·10-8 см1сек-2, ω = 1,773·10-3 сек-1. Определяем напряженность гравиполя тела: g = Rω2 = 7,858·10-5 см/сек-2. Находим силу Fв, с которой шар взаимодействует с гравитационным полем Земли: Fв = mvω =mg = 0,041 см.г.сек-2. (3.10) Это очень важный физический параметр Fв. Он свидетельствует о том, что тело притягивает Землю с силой Fв, Земля же притягивает тело с силой равной его весу, т.е. для железного тела радиусом R = 25 см с силой F = Р = 5,15105 см.г.сек-2 или в 12560000 раз сильнее. И утверждения в классической механике о том, что Земля притягивает тело с той же силой, с которой тело притягивает Землю, некорректны. Естественно, что это очень незначительная величина Fв = 0,041 см.г.сек-2, и ее без всякого ущерба для расчета можно игнорировать. Но наличие данной величины как физического фактора отбросить принципиально невозможно. Ее наличие в уравнении есть свидетельство реальности того тела, которое участвует в природном процессе и не позволяет производить приравнивания ни силы взаимодействия с пространством, ни напряженности его гравиполя к 0. Малая величина Fв = 0,041 см.г.сек-2 параметров тела, находящегося в покое, при математической формализации входит в уравнение II закона механики в виде основы и определяет его постоянную часть, возрастающую при внешнем воздействии. Таким образом, пульсирующий (обладающий, как и все тела на поверхности Земли, так называемым «нулевым колебанием») железный шар, находящийся в относительном покое (относительный покой — отсутствие перемещения относительно окружающего вещественного пространства, а по И. Ньютону — относительно окружающих вещественных тел), действует на пространство с силой Fв = 0,041см.г.сек, и это воздействие будет оставаться неизменным в течение достаточно неопределенного времени. Аналогичное силовое воздействие, образуемое каждым телом, должно входить в I закон механики, сформулированный следующим образом: g = vω − const ≠ 0, Fв = mg − const' ≠ 0, (3.2) где g − напряженность гравиполя тела. Параметры Fв и g неизменны не потому, что не могут меняться, а потому, что для этого изменения необходимо приложение внешней силы. И первый закон механики может быть сформулирован, придерживаясь И. Ньютона, следующим образом:
Дата добавления: 2014-11-29; Просмотров: 511; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |