КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Операции над матрицами
Суммой матриц А и В будем называть такую матриц, элементы которой равны сумме соответствующих элементов матриц А и В. Складывать можно только матрицы, имеющие одинаковые строение: или прямоугольные типа m ´ n, или квадратные n ´ n.
Примеры: 1) Дано:
,
Найти: А + В. Решение:
2) Дано:
, .
Найти: А + В. Решение:
Разность матриц выполняется аналогично, т.е. в результате вычитания двух матриц получается матрица элементы которой равны разности соответствующих элементов матриц. Пример: Дано:
, . Найти: А-В.
Решение:
Произведение матрицы А на число k называется такая матрица, каждый элемент которой равен k∙aij. Пример: 1) Дано:
Найти: 3∙ А. Решение: Умножая каждый элемент матрицы А на 3, получим
2) Дано:
,
Найти: 2∙ А-В. Решение: Найдем сначала 2∙ А
. Затем найдем
Определение: Произведением матрицы на матрицу называется матрица:
Итак, чтобы найти первый элемент новой матрицы с11, который расположен в первой строке и первом столбце, надо каждый элемент первой строки матрицы А (т.е. а11 и а12) умножить на соответствующий элемент первого столбца матрицы В (т.е. b11 и b21) и полученные произведения сложить: . Далее, чтобы найти элемент с12, расположенный в первой строке второго столбца, надо умножить все элементы первой строки матрицы А (т.е. а11 и а12) на соответствующие элементы второго столбца матрицы В (т.е. b12 и b22) и полученные произведения сложить: и т.д. Пример: Дано:
,
Найти: А∙В. Решение:
Правило умножения матриц распространяется на умножение прямоугольных матриц. Справедливы следующие правила: 1) умножение матрицы А на матрицу В имеет смысл только тогда, когда число столбцов матрицы А равно числу строк матрицы В. 2) в результате умножения двух прямоугольных матриц получится матрица, содержащая столько строк, сколько строк в первой матрице, и столько столбцов, сколько столбцов во второй матрице. Пример: Дано:
,
Найти: А∙В. Решение:
Свойства умножения матриц:
А∙В ≠ В∙А А∙ (В∙С) = (А∙В) ∙С (А+В) ∙С = А∙С+В∙С
Дата добавления: 2014-12-17; Просмотров: 504; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |