КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Условия возникновения электромагнитной силы
Как в этой, так и в других приведенных в настоящей параграфе формулировках речь идет о полной магнитной потоке, т. е. о полном числе сцеплений потока с рассматриваемым контуром. 2) Конечно, всякое окончательное увеличение схватываемого внешнего потока равносильно увеличению коэффициента взаимной индукции М, Мы выделяем случай двух контуров только потому, что в случае, например, потока, создаваемого постоянным магнитом, мы имеем сложное явление, при наличии которого нельзя сосредоточить внимание на определенном коэффициенте взаимной индукции М. 1) Общее рассмотрение этого вопроса и его развитие в отношении генераторных процессов (обратных двигательным) заключается в работе Е. Я. Семичева — ״Основные электродинамические процессы в электромагнитных механизмах“, напечатанной в докладах Академии Наук СССР за 1930 год, серия А, № 19, стр. 511. Рассмотрим некоторый круговой контур (рис. 164), по которому идет постоянный ток, поддерживаемый с помощью внешнего источника. Магнитные линии связанного с контуром потока самоиндукции расположатся, как показано на этом рисунке, именно: внутри контура гуще, чем снаружи. Но мы знаем, что по Фарадею магнитные линии обладают свойством бокового распора, т. е. в данном случае взаимно отталкиваются. На основании этого мы должны притти к заключению, что рассматриваемый контур под давлением проходящего сквозь него магнитного потока должен стремиться растянуться. Увеличение площади контура в этом случае (контур имеет везде кривизну одного знака) влечет за собой увеличение коэффициента самоиндукции контура (L). Следовательно, если сила тока в контуре поддерживается постоянной от постороннего источника, то увеличение площади данного контура означает увеличение связанного с контуром магнитного потока самоиндукции Ф s= Li. Далее, увеличение коэффициента самоиндукции контура при постоянстве силы тока в контуре влечет за собою увеличение электрокинетической энергии системы. Таким образом, данный пример является иллюстрацией всех приведенных выше формулировок закона движений в электродинамической системе, в которой силы токов сохраняются неизменными. Мы имеем здесь, в результате движения, увеличение: коэффициента самоиндукции контура L, связанного с контуром потока Фs=Li к электрокинетической энергии системы (в данном случае состоящей из одного контура) Te= 1/2 Li 2. Вместе с тем выявляется внутреннее единство этих формулировок, в том смысле, что все они представляют собою констатирование различных проявлений основного физического процесса (в данном случае — бокового распора магнитных линий). Рассмотрим теперь более сложный случай системы, состоящей из двух контуров, по которым протекают токи, одного и того же направления (рис. 165). В этом случае, кроме магнитных потоков, связанных с каждым из контуров, мы имеем еще поток, пронизывающий оба контура. Соответственно усложняется и проявление электромагнитных сил. Во-первых, каждый из контуров испытывает действие сил, стремящихся увеличить коэффициент самоиндукции, механизм возникновения которых разобран в предыдущем примере
и действие которых, при условии постоянства знака кривизны каждого из контуров, дает увеличение его площади (в случае эластичности материала контуров). Во-вторых, существование магнитного потока, пронизывающего оба контура, в силу продольного тяжения магнитных линий, дает начало силам, стремящимся сблизить два контура, если токи в них одного направления, как это взято в нашем примере. Чтобы упростить картину, положим, что контуры жесткие. 33 этом случае единственным возможным движением является перемещение контуров друг относительно друга, в нашем случае — сближение их, как результат продольного тяжения общих магнитных линий, к которому и сводится в данном случае электромагнитная сила. При сближении контуров под действием этой электромагнитной силы магнитные линии обособленных потоков каждого из контуров, встречаясь, преобразуются в линии потока общего для обоих контуров. Таким образом, в данном случае, при одинаково направленных токах, непосредственным результатом движения является увеличение общего магнитного потока, пронизывающего оба кольца. При этом будет увеличиваться и поток взаимной индукции, связанный с каждым из контуров. Следовательно, в данном случае увеличивается коэффициент взаимной индукции контуров (М). Если сила тока в контурах поддерживается постоянной от внешнего источника, то и поток самоиндукции, связанный с каждым из контуров, также будет постоянным, и потому увеличение потока взаимной индукции означает увеличение полного потока, связанного с каждым из контуров. Стало быть при постоянстве силы тока в результате движения увеличивается и электрокинетическая энергия системы, что видно и непосредственно из ее выражения: Действительно, так как L 1=const, L 2 = const, i 1=const, i 2=const, а М увеличивается, то Te увеличивается.
В случае, если токи в рассматриваемых двух простейших контурах направлены в противоположные стороны, магнитные линии будут расположены подобно тому, как это представлен но на рисунке 166. При этом в силу существования бокового распора, т. е. взаимного расталкивания в системе одинаково направленных магнитных линий, контуры будут отталкиваться один от другого. Следовательно, в случае противоположно направленных токов стремится возникнуть такое движение, в результате которого коэффициент взаимной индукции контуров (М) уменьшится. Но если силы токов в контурах, i 1 и i 2, поддерживаются постоянными, благодаря какому-либо внешнему генератору, то величина электрокинетической энергии системы и в этом случае будет возрастать в полном соответствии с формулированным выше основным положением. Действительно, так как при наличии противоположно направленных токов будем иметь: i 1 i 2<0, то очевидно, что электрокинетическая энергия: будет возрастать по мере уменьшения М, Ясно, конечно, что при этом будет возрастать полный магнитный поток, сцепляющийся с каждым из рассматриваемых контуров. Таким образом, и в последних примерах все формулировки закона движений электродинамической системы оказываются тесно связанными между собой, так как сводятся к констатированию следствий основного физического процесса, представляющего собою и в данном случае проявление механических свойств магнитных линий: их продольного тяжения и взаимного расталкивания. Во избежание недоразумений необходимо еще обратить внимание на следующее обстоятельство. Окончательная картина расположения магнитных линий в случае какой угодно сложной системы, вообще, и в случаях, схематически представленных на рис. 165 и 166, в частности, является результатом соответствующих преобразований сосуществующий потоков самоиндукции и потоков взаимной индукции. В связи с этим, тот поток, который мы называем потоком взаимной индукции (Mi 1или Mi 2 в простейшем случае двух цепей) может в значительной степени численно отличаться от результирующего потока, общего для двух или нескольких, вообще, отдельных цепей, входящих в состав рассматриваемой системы. В основном положении, сформулированном в параграфе 107, и гласящем о стремлении электродинамической системы увеличить
свою электрокинетическую энергию, указывалось, что это стремление имеет место при наличии надлежащих условий, именно, при сохранении постоянства всех сил токов в рассматриваемой системе, Из вышеприведенных примеров мы можем ясно видеть, что при соблюдении этого условия электрокинетическая энергия системы действительно увеличивается в результате движений, возникающих в системе под действием электромагнитных сил. Следует, однако, иметь в виду, что могут быть различные специальные случаи, когда силы токов в системе не поддерживаются постоянными, но по тем или иным причинам претерпевают непрерывное изменение. И эти изменения могут быть такого рода, что электрокинетическая энергия системы будет не возрастать, а уменьшаться в то время, как в ней происходят движения под действием электромагнитных сил. Но характер тех стремлений к движению, которые обнаруживаются во всякой электромагнитной системе и которые мы именно и называем электромагнитными силами, нисколько не зависит от того, каковы будут электрические токи в системе после соответствующих передвижений, так же как они не зависят и от того, каковы были токи до начала движения. Величина и направление электромагнитной силы, приложенной к каждой отдельной части электродинамической системы при данной ее конфигурации, зависит от напряженности электрокинетического процесса в системе, т. е. от сил токов, в данный момент, и определяется частной производной электрокинетической энергии по соответствующей координате: причем, беря эту частную производную, мы должны помнить, что в выражении Тe только коэффициенты L и М являются функциями геометрических координат, силы же токов, повторяем, должны рассматриваться как величины, от геометрических координат не зависящие. Последнее вытекает из основных положений максвелловой электродинамики, в которой количества электричества принимаются в качестве переменных независимых. Сказанному нисколько не противоречат некоторые особые случаи, легко осуществляемые на практике, когда все происходит так, как будто бы сила тока в некоторой системе непосредственно зависит от геометрической координаты. Можно, например, связать движущуюся часть системы с каким-либо включенным в цепь реостатом так, чтобы при движении, т. е. при изменении геометрической координаты под действием механической силы, изменялась и сила тока в цепи. Аналогичное изменение силы тока, сопутствующее изменению геометрической координаты, может иметь место и при наличии каких-либо движений в системе, состоящей из сверхпроводящих цепей. Во всех этих случаях, однако, сила тока никоим образом не может рассматриваться как принципиально зависящая от механической силы и от геометрической координаты. На величину силы тока и на количество протекшего электричества может
прямым образом влиять только электродвижущая сила. Таким образом, сила тока по природе своей не является функцией геометрических координат и потому, какова бы ни была внешняя обстановка, мы должны при рассмотрении вопроса относительно возникающих в системе механических сил считать токи не зависящими от геометрических координат. Итак, величина и направление электромагнитной силы в каждый данный момент зависит только от сил токов в этот именно момент и от характера изменения коэффициентов L и М системы в зависимости от изменения соответствующей геометрической координаты. Одним словом, как бы ни изменялись токи в рассматриваемой системе, при определении величины и направления возникающих в ней в данный момент электромагнитных сил необходимо рассуждать так же, как если бы эти токи были постоянны.
Дата добавления: 2014-11-29; Просмотров: 1110; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |