КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Тема 11. Электрохимические процессы. Гальванический элемент. Коррозия металлов 1 страница
11-1. Потенциал стандартного водородного электрода а) имеет абсолютное значение 0 В б) имеет относительно значение 0 В в) условно принят равным 0 В г) отличается от 0 при стандартных условиях
11-2. Величина электродного потенциала при стандартной температуре вычисляется по формуле
11-3. Электродным потенциалом называется потенциал, установившийся а) на границе между поверхностью металла и внутренним слоем металла б) между поверхностью металла и близлежащим слоем раствора в двойном электрическом слое в) перед его погружением в раствор г) при соединении металла с другими металлами
11-4. Окислительно-восстановительные реакции – это реакции, в которых а) изменяется степень окисления элементов б) не изменяется степень окисления элементов в) происходит обмен составными частями молекул г) происходит разложение веществ
11-5. Электродный потенциал возникает при погружении металла в раствор а) между атомами металла, находящимися на поверхности и находящимися внутри компактного металла б) между атомами металла, находящимися внутри, и раствором в) на поверхности металла г) в двойном электрическом слое, образующемся на границе между металлом и раствором
11-6. Абсолютное значение электродного потенциала измерить а) нельзя ни при каких условиях б) можно только при стандартных условиях в) можно только в специальных условиях г) нельзя только при стандартных условиях
11-7. Стандартным электродным потенциалом металла называется потенциал, а) установившийся на границе металл–раствор при погружении металла в раствор собственной соли с концентрацией 1 моль/л б) установившийся на границе металл–раствор при погружении металла в раствор собственной соли и измеренный с помощью вольтметра в) металла, погруженного в раствор собственной соли со стандартной концентрацией ионов металла и измеренный относительно водородного электрода при стандартных условиях г) вычисленный по уравнению Нернста при стандартных условиях
11-8. Стандартные электродные потенциалы измеряют по отношению к а) потенциалу Земли б) стандартному водородному электроду в) стандартному металлическому электроду г) эталону электродного потенциала
11-9. Более активными, чем водород, являются металлы, стандартный электродный потенциал которых а) более положителен, чем у водорода б) более отрицателен, чем у водорода в) совпадает с потенциалом водорода г) больше, чем потенциал других металлов
11-10. Менее активными, чем водород, являются металлы, стандартный электродный потенциал которых а) более положителен, чем у водорода б) более отрицателен, чем у водорода в) совпадает с потенциалом водорода г) больше, чем потенциал других металлов
11-11. Металлы, стандартный электродный потенциал которых имеет отрицательную величину, а) могут вытеснять водород из кислот б) не могут вытеснять водород из кислот в) могут вытеснять собственные катионы из растворов солей г) могут взаимодействовать с другими металлами
11-12. Восстановительная активность металла а) возрастает с уменьшением величины его электродного потенциала б) возрастает с увеличение величины его электродного потенциала в) убывает с уменьшением величины его электродного потенциала г) убывает с увеличением величины его электродного потенциала
11-13. Возникновение электродного потенциала на цинке показано на рисунке
11-14. Величина электродного потенциала металла зависит от а) природы металла б) атмосферного давления в) концентрации ионов металла в растворе г) температуры д) величины числа Фарадея
11-15. Верно утверждение: значение электродного потенциала а) можно вычислить по формуле Нернста б) можно измерить при стандартных условиях в) можно измерить в специальных условиях г) нельзя измерить ни при каких условиях
11-16. Соответствие обозначений в уравнении Нернста и их физического смысла
11-17. Наиболее сильными восстановительными свойствами обладает
11-18. Наиболее слабыми восстановительными свойствами обладает
11-19. Будет вытеснять водород из кислот
11-20. Потенциал водородного электрода равен нулю при температуре
11-21. Наиболее слабыми восстановительными свойствами обладает
11-22. Наиболее сильными восстановительными свойствами обладает
11-23. Потенциал водородного электрода равен 0 В при концентрации ионов водорода ___ моль/л.
11-24. Восстановительные свойства металлов усиливаются в ряду
11-25. Потенциал серебряного электрода при стандартной температуре и концентрации ионов Ag+ в растворе 0,1 моль/л, () равен
11-26. Потенциал железного электрода, погруженного в раствор соли двухвалентного железа с концентрацией ионов железа 0,01 моль/л, при стандартной температуре ().
11-27. Восстанавливать кадмий из водных растворов солей НЕ будут ()
11-28. Металлическая медь будет в водных раствора вытеснять металл из солей (, , , ):
11-29. Потенциал водородного электрода в растворе HCl с концентрацией 1×10–4 моль/л при стандартной температуре
11-30. Электродвижущая сила гальванического элемента вычисляется по формуле:
11-31. Гальваническим элементом называется устройство для а) пропускания электрического тока через раствор или расплав веществ б) превращения энергии окислительно-восстановительных реакций в электрическую энергию в) превращения энергии электрического тока в химическую энергию г) превращения энергии реакции нейтрализации в электрическую энергию
11-32. Гальванический элемент является источником тока
11-33. Аккумулятор является источником тока
11-34. Анод гальванического элемента
11-35. Катод гальванического элемента
11-36. В гальваническом элементе катод и анод погружены в раствор
11-37. Катодом в гальваническом элементе является металл с а) более отрицательным потенциалом б) более положительным потенциалом в) большей атомной массой г) меньшим радиусом атома
11-38. Анодом в гальваническом элементе является металл с а) более отрицательным потенциалом б) более положительным потенциалом в) большей атомной массой г) меньшим радиусом атома
11-39. Электродвижущая сила гальванического элемента равна разности а) электродных потенциалов катода и анода б) электродных потенциалов анода и катода в) потенциалов приложенного тока г) потенциалов ионизации материала анода и материала катода.
11-40. Схема гальванического элемента начинается с записи
11-41. Анодная реакция в гальваническом элементе Даниеля – Якоби:
11-42. Токообразующая реакция в гальваническом элементе Даниеля – Якоби:
11-43. Значения стандартного электродного потенциала измеряются относительно ___ электрода.
11-44. Процесс ___ протекает на аноде гальванического элемента.
11-45. Процесс ___ протекает на катоде гальванического элемента.
11-46. Условие работы гальванического элемента:
11-47. Анодом в гальваническом элементе с железным катодом () будут
11-48. Никель () будет катодом гальванического элемента в паре с
11-49. Катодная реакция в гальваническом элементе Ni |Ni2+ || Pb2+ |Pb (, ):
11-50. Соответствие между словами и схемами
11-51. Соответствие между токообразующими реакциями в гальваническом элементе и схемами элементов
11-52. Олово Sn () является катодом гальванического элемента в паре с
11-53. В кислотном аккумуляторе электроды
11-54. Никель будет анодом в гальваническом элементе (, , , , )
11-55. Олово будет катодом в гальваническом элементе (, , , , )
11-56. Записана правильно схема гальванического элемента (, , , , )
11-57. Электроды в схеме гальванического элемента ___ обозначены правильно (, ,, , ).
11-58. Процесс Ni0 – 2e " Ni2+ протекает на аноде в гальванических элементах ___ (, , , ).
11-59. Железо окисляется в гальваническом элементе ___ (, , , , ).
11-60. Электродвижущая сила (ЭДС) гальванического элемента, составленного из цинка и ртути (, ) равна
11-61. ЭДС гальванического элемента Ni | Ni2+ || Cu2+ | Cu равна (, )
11-62. ЭДС гальванического элемента Fe | Fe2+ || Cu2+ | Cu в сравнении с ЭДС элемента Fe | Fe2+ || Ni2+ | Ni (, , )
Дата добавления: 2014-11-29; Просмотров: 949; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |