КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Характеристики форми розподілу: коефіцієнти асиметрії та ексцесуРізноманітність статистичних сукупностей – передумова різних форм співвідношення частот і значень варіативної ознаки. За своєю формою роз-поділи поділяються на одновершинні (див. рис. 6.7) та багатовершинні (коли розподіл має дві, три та більше вершин). Наявність двох і більше вершин (див. рис. 6.8) свідчить про неоднорідність сукупності, про поєднання в ній груп з різними рівнями ознаки. У такому разі необхідно більш ретельно проаналізувати наявну вихідну інформацію, перегрупувати дані, виділивши однорідні групи. Розподіли якісно однорідних сукупностей, як правило, одновершинні. Серед одновершинних розподілів є симетричні та асиметричні (скошені), гостровершинні та плосковершинні.
Рис.6.7. Одновершинний розподіл Рис. 6.8. Багатовершинний розподіл
У симетричному розподілі рівновіддалені від центра значення ознаки мають однакові частоти, при цьому середня, мода та медіана мають однакові значення Найпростішою мірою асиметрії є відхилення від середньої арифметичної медіани чи моди. В симетричному розподілі характеристики центра мають однакові значення
Рис. 6.9. Види розподілу:
–
Стандартизовані відхилення, які мають назву коефіцієнта асиметрії, характеризують напрям та міру скошеності розподілу і розраховуються за формулами:
Якщо має місце відхилення коефіцієнта асиметрії від нуля в той чи інший бік, то можна вести мову про більшу чи меншу асиметрію. Вважають, що при Характеристики центру розподілу ґрунтуються на моментах розподілу. Момент розподілу – це середня k -го ступеня відхилень
де хі – значення окремої варіанти;
k – ступінь моменту; fi – частота окремої варіанти. Для того, щоб характеристика скошеності не залежала від масштабу вимірювання ознаки для порівняння ступеня асиметрії різних розподілів, використовують стандартизований момент третього ступеня. В такому разі коефіцієнт асиметрії визначається за формулою:
де М3 – центральний момент третього порядку;
Гостровершинність розподілу відображає скупченість значень ознаки навколо середньої величини та називається ексцесом. Для вимірювання ексцесу використовують коефіцієнт, побудований за допомогою стандартизованого моменту четвертого порядку, який розраховується за формулою:
де М4 – центральний момент четвертого порядку. Якщо Е = 3, то розподіл уважається нормальним, при E < 3 – плосковершинний, при E > 3 - розподіл має гостровершинну форму. Термін «ексцес» грецького походження (kurtosis), тому назви форми ексцесу походять від цього кореня слова (див. рис.6.10):
Рис.6.10. Види розподілу: – – –
Наведений графік свідчить, що для стрічкокуртичної кривої характерне розміщення більшості одиниць сукупності поблизу центра. У випадку платокуртичної кривої (форма силуету – плато) варіанти значно віддалені від центру розподілу. Помірне розміщення навколо центра розподілу варіант визначає форма ексцесу у вигляді мезокуртичної кривої. На практиці часто в одному розподілі поєднуються всі названі особливості, а саме: одновершинний розподіл може бути симетричним та гостровершинним, або плосковершинним з лівосторонньою асиметрією, або гостровершинним з правосторонньою асиметрією тощо.
Дата добавления: 2014-12-07; Просмотров: 1741; Нарушение авторских прав?; Мы поможем в написании вашей работы! |