Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Пространство, как система базирования




ЕВКЛИДОВО ПРОСТРАНСТВО. НОРМИРОВАНИЕ

Является частным случаем линейного пространства над чи­словым полем, если определена операция вида s: S ´ S ® К.

Применяя нормирование для всех векторов, переходят к нормированным пространствам.

Способы задания нормы:

а) êêх êê = êx1 ê + êx2 ê +... + êxn ê, т.е. суммарная длина всех векторов xi;

б) êêх êê= max {êxi ê}) }.

Свойства нормы:

а) êêх êê³ 0; êêх êê= 0 при х = 0.; 0 Î K;

б) êêl*х êê= êl ê* êêх êê; l Î К; х Î S;

в) úú х+yúú £úú хúú +úú yúú - неравенство треугольника.

Единичный вектор, если úú хúú =1.

"Система отсчета (система координат) - это схема правил, описывающих каждый математический объект (точку) некоторого класса (пространства) соответствующим упорядоченным множе­ством чисел (компонент, координат): х12;…xn (n-размерность пространства)". [18].

Метасистема координат непосредственно не связана с ма­тематическим объектом и служит базой для описания объекта на­блюдений в среде; она образует групповой базис (базу) объекта наблюдений (Г или G - знак группового базирования). Например, студент - x, учебная группа - У, семестр - z, задание по КПР- s:

G Û (х,у,z,s...).

Поместить объект наблюдений в пространство означает оп­ределить его систему отсчета, ввести понятия меры, расстояния, длины, нормы..., т.е. иметь возможность воспользоваться матема­тическими свойствами различных систем координат.

Преобразование координат допускает две интерпретации: активную (alibi) и пассивную (alias).[18, с.362].

Пусть задан математический объект точкой

x = (х1.... хn); x' = Т(х); xa1 xa2 …. xan

где

xb1 xb2 …. xbn.

При активной точке зрения операция Т ставит в соответст­вие каждому объекту xa одного пространства объект хb другого пространства.

При пассивной точке зрения операция Т вводится как но­вое описание объекта X в новых координатах.

Активный подход позволяет абстрактные математические отношения представлять числовыми соотношениями. Пассивный приводит к замене системы отсчета, что часто упрощает решение задачи. Это равносильно переходу к новому базису.

Примеры

1. Переход к логарифмической шкале отсчета.

2. Введение логарифмической меры К. Шеннона для оценки систем­ной функции выбора.

Множество систем отсчета называется системой мер. Пере­ход от одной системы отсчета к другой связан с преобразованием пассивного типа.

Например, решение задачи матричных игр 2 ´ 2 методом линейного программирования (геометрически), в пространстве S- игры, на поверхности отклика или в проекциях [20].

Системы координат, применяемые для физических объек­тов, включаются в процесс преобразования данных эксперимента.

Схема направленного процесса преобразования исходных данных наблюдений состоит из ряда блоков:

1. Блока формирования исходных данных.

2. Блоков составления систем уравнений: топологических и

компонентных.

3. Блока преобразования уравнений в различных системах координат.

3.1. В однородной системе координат. Получают уравнения сечений и контуров на графе схемы многополюсника.

3.2. В неоднородных и сокращенных системах координат. Получают уравнения переменных состояния.

Примеры применения систем координат на физических объектах разной сложности приведены в литературе [2, с.414 -500].

Задачи и упражнения

1. Определите пространство состояний и переходов, приме­няемое в системах массового обслуживания для следующих сис­тем в обозначениях по Кендалу: М/М/1/0, М/М/n/m, G/G/3/3. Опишите математические свойства подобных про­странств [21,33,68].

2. Известна задача о ханойской башне [20]. Приведите про­странство состояний и переходов, описывающее решение этой за­дачи. Определите метрику и расстояние в данном пространстве.

3. Определите понятия однородной, неоднородной и со­кращенной систем координат, применяемых для описания физи­ческих систем (см.[2, с. 413]).

4. Исследуйте изоморфизм физических систем, построен­ных на понятиях поперечной и продольной переменных полюс­ного графа [2, с. 392]. Определите математические свойства вве­денных переменных и их конкретные формы для различных фи­зических объектов.

5. Известны алгоритмы оптимизации задач, решаемых на сетях и графах [66,67]. Приведите примеры задач и определите их топологию.

6. Множество слов длины n из различных знаков (букв, цифр, пробелов...) при соответствующей метрике образуют метри­ческое пространство [2, с. 168].

Предложите соответствующую метрику для расстояния b(х,у), где х, у - отдельные слова, например:

- позиции с одинаковыми символами;

- количество позиций с различными символами;

а) проверьте выполнимость аксиом метрического простран­ства;

б) задайте несколько слов из n символов и найдите рас­стояние между ними;

в) постройте матрицу расстояний для нескольких кортежей из чисел {0,1} длиной m;

г) проверьте свойства метрики на конкретных примерах.

7. Приведите топологии на множествах из ограниченного числа элементов: 1,2,3,4,5.

8. Покажите, что композиция объектов образует линейное пространство при задании законов композиции.

4. ИНФОРМАЦИОННЫЙ УРОВЕНЬ
КОНКРЕТИЗАЦИИ СИСТЕМ – У6

Информация связана с процессами преобразования и пере­дачи систем знаков. Знаками называют системы конкретных или абстрактных объектов, c каждым из которых определенным обра­зом сопоставлено некоторое значение.

Например, СМО типа G/G/3/3. Значение определяется как позиционная система кодирования по Кендалу [68].

Значение может быть реальным физическим объектом или абстрактным понятием.

Примеры знаковых систем:

- языки общения (естественные и искусственные); системы исчислений (арабская, двоичная, высказываний, предикатов); системы сигнализации(азбука Морзе, флажковая...); системы состояний; системы знаков в музыке; любые устройства и их элементы; живые организмы и их элементы; коллективы и организации...

Таким образом, объект любой природы с информационной точки зрения является своеобразным знаком для субъекта.

Семиотика изучает свойства информационных знаковых систем. Семиотика (с греческого) переводится как "знак". Различают три составляющих семиотики: синтактику, се­мантику и прагматику.

Топологическое описание информационных систем строит­ся на мерах Клода Шеннона: на количестве информации (I), эн­тропии (H), скорости передачи информации [2;32].




Поделиться с друзьями:


Дата добавления: 2014-12-07; Просмотров: 364; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.018 сек.