Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Дискретное преобразование Фурье




Замечание.

Решение.

Пример. По заданному преобразованию Лапласа непрерывной функции найти ее – преобразование.

.

.

 

 

Это преобразование позволяет распространить частотные методы исследования, разработанные для непрерывных систем автоматического управления, на дискретные системы.

Пусть абсцисса абсолютной сходимости дискретного преобразования Лапласа (1) функции отрицательна . Тогда изображение существует и является аналитической функцией в правой полуплоскости и на мнимой оси. Пологая в формуле (1) , получим

. (34)

Эта формула прямого преобразования дискретного Фурье.

Обратное дискретное преобразование Фурье определяется по формуле

. (35)

Эта формула получается из формулы обратного дискретного преобразования Лапласа при .

Функцию в этом случае можно назвать спектральной характеристической дискретной функцией .

Связь между непрерывным преобразованием Фурье для непрерывной функции и соответствующей ей дискретной функции , имеющей дискретное преобразование Фурье определяется формулой

(36)

.

В частности при формула (36) принимает вид

. (37)

Выражение (36) связывает преобразование Фурье функции и дискретное преобразование Фурье соответствующей дискретной функцией . Формулу (36) можно переписать следующим образом

, (38)

где .

Из формул (36) и (38) следует теорема Котельникова, которая устанавливает связь между непрерывными и дискретными функциями.

 




Поделиться с друзьями:


Дата добавления: 2014-12-07; Просмотров: 462; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.