КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Методи встановлення зв’язку
Розподіл семестрових оцінок з біології учнів 6-А і 6-Б класів
Таблиця 2.12 Робоча таблиця обчислення х2-критерія
У нашому прикладі χ2 emp = 1,22. Знаходимо χ2 krit за даними табл.2.13. При чому n – це кількість інтервалів. Для нашого випадку n = 5, χ2 krit = 9,49. Якщо χ2 emp ≤ χ2 krit, то досліджувані вибірки подібні, якщо χ2 emp > χ2 krit, то групи суттєво різняться. Як показали результати дослідження, успішність учнів 6-А і 6-Б класу з біології достатньо схожа і групи подібні за цією ознакою. Таблиця 2.13 Таблиця χ2 – критерію
Оскільки в педагогічному процесі більшість явищ взаємообумовлені і взаємопов’язані, то дослідникам часто доводиться встановлювати наявність або відсутність такого зв’язку між досліджуваними параметрами, використовуючи коефіцієнти кореляції. Метод кореляції допомагає з високою ймовірністю стверджувати наявність зв'язку між параметрами. Зокрема, так можна встановити залежність успішності учнів з навчального предмету від розвитку їхньої пізнавальної активності чи спостережливості або від рівня розвитку загальнонавчальних умінь. Для інтервальних шкал застосовують лінійну кореляцію (за К. Пірсоном), а для порядкових і невеликих вибірок – порядкову, або рангову, кореляцію (за Спірменом). Лінійна кореляція (за К.Пірсоном) Обчислюється коефіцієнт лінійної кореляції (ρ) за формулою:
{Формула 2.10} де (хi – ) – відхилення кожного окремого значення х від середнього арифметичного (); (yi – ) - відхилення кожного окремого значення y від середнього арифметичного (). Ця ж формула у вигляді більш зручному для підрахунку.
{Формула 2.11}
Отриманий емпіричний коефіцієнт лінійної кореляції (remp)слід порівняти з його табличним значенням (rkrit) за табл. 2.14, у якій наведені 95% і 1% ймовірності; де n – кількість пар, що порівнюються. Таблиця 2.14 Таблиця достовірності коефіцієнта лінійної кореляції
n – об’єм вибірки (кількість пар, що порівнюються). Якщо ׀remp׀ ≥ rkrit, то існує достовірний зв’язок між двома досліджуваними явищами. При чому чим більша різниця між remp і rkrit, тим сильнішим цей зв’язок є. Якщо remp має від’ємне значення, то зв’язок між явищами, що досліджуються є оберненим, якщо remp має додатне значення – зв’язок прямий. У випадку, коли ׀remp׀ < rkrit, говорять, що лінійний зв’язок між двома досліджуваними параметрами відсутній.
Порядкова або рангова кореляція (за Спірменом)
Порядкову кореляцію можна застосовувати не тільки для порядкових, а й для інтервальних шкал. Обчислюється коефіцієнт порядкової кореляції (ρ) за формулою:
{Формула 2.12}
де di = (х/ - y/) – різниця рангів об'єкта за ознаками, між якими встановлюється зв'язок х/ – ранг значення першої ознаки (хі); y/ – ранг значення другої ознаки (yі); n – об’єм вибірки. Ранги значень знаходять таким чином: 1) розташовують значення у висхідному (або низхідному) порядку; 2) кожному значенню приписується ранг. Ранг – це порядковий номер (місце) конкретного значення у впорядкованому ряді; 3) якщо два (або більше) учні отримали однакові значення, то рангом буде для цих значень середнє арифметичне їхніх порядкових номерів (місць) у ряду. Наприклад, проранжуємо таку сукупність оцінок учнів з навчального предмету: 7, 8, 8, 6, 5, 8, 8, 10. Розмістимо ці дані у табл.11. Таблиця 2.15
Дата добавления: 2014-12-07; Просмотров: 468; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |