КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Преобразование уравнений состояния
Пусть система описывается уравнениями состояния общего вида (8.3). Сделаем в этих уравнениях замену переменных x = Q z, где – новый вектор состояния, Q – произвольная матрица размерностью с постоянными коэффициентами. На матрицу Q накладывается единственное ограничение – она должна быть невырожденной (неособенной), т.е. определитель этой матрицы . В этом случае всегда существует обратная матрица, которую будем обозначать через , такая, что , где – единичная матрица размерностью . Очевидно, что при этих условиях существует однозначная связь между векторами x и z: , . В уравнениях (8.3) сделаем замену x = Q z и с учетом того, что , получим , . (8.8)
Уравнения (8.8) будут новыми уравнениями состояния, имеющими основную матрицу системы , входа и выхода C Q. Так как Q – произвольная матрица, то исходным уравнениям (8.3) соответствует бесчисленное количество эквивалентных уравнений состояния (8.8). Отметим, что две матрицы A и , связанные преобразованием , называются подобными. Подобные матрицы имеют одинаковые собственные значения. Используя линейное преобразование, можно поставить задачу о выборе при исследовании той или иной формы уравнений состояния. Наиболее часто решается задача преобразования исходной системы (8.3) к нормальной или канонической форме уравнений состояния (8.8). Доказано, что для произвольной матрицы А всегда существует невырожденная квадратная матрица размерностью , которую обозначим через M и назовем модальной, такая, что матрица будет иметь форму Жордана. Если матрица А имеет различные собственные значения (числа) , являющиеся корнями характеристического уравнения , (8.9) то матрица будет диагональной: . Таким образом, преобразование произвольной системы уравнений (8.3) к канонической форме всегда возможно. Наиболее просто задача определения модальной матрицы решается для случая различных собственных чисел матрицы А, которые обозначим через . Для каждого собственного числа находится собственный вектор из решения векторно-матричного уравнения . (8.10) Матрица, образованная вектор-столбцами , т.е. матрица , (8.11) и будет искомой модальной матрицей. В соответствии с (8.9) при определитель системы линейных уравнений (8.10) равен нулю, т.е. система имеет бесчисленное множество решений, каждое из которых можно принять за собственный вектор. Отсюда матрица М является неединственной. В случае кратных собственных значений матрицы А задача определения модальной матрица значительно усложняется. В частности, если исходная матрица А является матрицей Фробениуса (8.12) и собственные числа , являющиеся корнями характеристического уравнения = 0, (8.13) различны, то модальная матрица будет иметь вид . (8.14) Пример 8.3. Пусть в САУ, которая рассматривалась в примерах 8.1 и 8.2, с, , тогда уравнения (8.7) будут иметь вид , . (8.15) Преобразуем уравнения состояния к канонической форме. Основная матрица системы А является матрицей Фробениуса. Найдем ее собственные значения из решения характеристического уравнения .
Корни уравнения будут различными: , . Таким образом, в соответствии с (8.14) определяем модальную матрицу M и обратную ей : , . Далее M –1 AM = diag [–2+ j 4, –2 – j 4], , . Итак, уравнения состояния (8.15) преобразуются к канонической форме: , . Пример 8.4. Пусть система описывается уравнениями состояния , . Корни характеристического уравнения будут , . Находим собственные векторы из решения системы линейных уравнений , . Полагая , будем иметь
Из последних двух уравнений , откуда, задавая, например, , получим . Итак, первый собственный вектор . При в конечном итоге для определения координат второго собственного вектора получим . Полагая , будем иметь и соответственно . Итак, матрицу М можно выбрать в виде , . , , . Окончательно уравнения в канонической форме будут иметь следующий вид: , .
Дата добавления: 2014-12-07; Просмотров: 504; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |